@node Zebra @chapter Zebra @c SYNOPSIS @command{zebra} is an IP routing manager. It provides kernel routing table updates, interface lookups, and redistribution of routes between different routing protocols. @menu * Invoking zebra:: Running the program * Interface Commands:: Commands for zebra interfaces * Static Route Commands:: Commands for adding static routes * zebra Route Filtering:: Commands for zebra route filtering * zebra Terminal Mode Commands:: Commands for zebra's VTY @end menu @node Invoking zebra @section Invoking zebra Besides the common invocation options (@pxref{Common Invocation Options}), the @command{zebra} specific invocation options are listed below. @table @samp @item -b @itemx --batch Runs in batch mode. @command{zebra} parses configuration file and terminates immediately. @item -k @itemx --keep_kernel When zebra starts up, don't delete old self inserted routes. @item -r @itemx --retain When program terminates, retain routes added by zebra. @end table @node Interface Commands @section Interface Commands @deffn Command {interface @var{ifname}} {} @end deffn @deffn {Interface Command} {shutdown} {} @deffnx {Interface Command} {no shutdown} {} Up or down the current interface. @end deffn @deffn {Interface Command} {ip address @var{address/prefix}} {} @deffnx {Interface Command} {ip6 address @var{address/prefix}} {} @deffnx {Interface Command} {no ip address @var{address/prefix}} {} @deffnx {Interface Command} {no ip6 address @var{address/prefix}} {} Set the IPv4 or IPv6 address/prefix for the interface. @end deffn @deffn {Interface Command} {ip address @var{address/prefix} secondary} {} @deffnx {Interface Command} {no ip address @var{address/prefix} secondary} {} Set the secondary flag for this address. This causes ospfd to not treat the address as a distinct subnet. @end deffn @deffn {Interface Command} {description @var{description} ...} {} Set description for the interface. @end deffn @deffn {Interface Command} {multicast} {} @deffnx {Interface Command} {no multicast} {} Enable or disables multicast flag for the interface. @end deffn @deffn {Interface Command} {bandwidth <1-10000000>} {} @deffnx {Interface Command} {no bandwidth <1-10000000>} {} Set bandwidth value of the interface in kilobits/sec. This is for calculating OSPF cost. This command does not affect the actual device configuration. @end deffn @deffn {Interface Command} {link-detect} {} @deffnx {Interface Command} {no link-detect} {} Enable/disable link-detect on platforms which support this. Currently only Linux and Solaris, and only where network interface drivers support reporting link-state via the IFF_RUNNING flag. @end deffn @node Static Route Commands @section Static Route Commands Static routing is a very fundamental feature of routing technology. It defines static prefix and gateway. @deffn Command {ip route @var{network} @var{gateway}} {} @var{network} is destination prefix with format of A.B.C.D/M. @var{gateway} is gateway for the prefix. When @var{gateway} is A.B.C.D format. It is taken as a IPv4 address gateway. Otherwise it is treated as an interface name. If the interface name is @var{null0} then zebra installs a blackhole route. @example ip route 10.0.0.0/8 10.0.0.2 ip route 10.0.0.0/8 ppp0 ip route 10.0.0.0/8 null0 @end example First example defines 10.0.0.0/8 static route with gateway 10.0.0.2. Second one defines the same prefix but with gateway to interface ppp0. The third install a blackhole route. @end deffn @deffn Command {ip route @var{network} @var{netmask} @var{gateway}} {} This is alternate version of above command. When @var{network} is A.B.C.D format, user must define @var{netmask} value with A.B.C.D format. @var{gateway} is same option as above command @example ip route 10.0.0.0 255.255.255.0 10.0.0.2 ip route 10.0.0.0 255.255.255.0 ppp0 ip route 10.0.0.0 255.255.255.0 null0 @end example These statements are equivalent to those in the previous example. @end deffn @deffn Command {ip route @var{network} @var{gateway} @var{distance}} {} Installs the route with the specified distance. @end deffn Multiple nexthop static route @example ip route 10.0.0.1/32 10.0.0.2 ip route 10.0.0.1/32 10.0.0.3 ip route 10.0.0.1/32 eth0 @end example If there is no route to 10.0.0.2 and 10.0.0.3, and interface eth0 is reachable, then the last route is installed into the kernel. If zebra has been compiled with multipath support, and both 10.0.0.2 and 10.0.0.3 are reachable, zebra will install a multipath route via both nexthops, if the platform supports this. @example zebra> show ip route S> 10.0.0.1/32 [1/0] via 10.0.0.2 inactive via 10.0.0.3 inactive * is directly connected, eth0 @end example @example ip route 10.0.0.0/8 10.0.0.2 ip route 10.0.0.0/8 10.0.0.3 ip route 10.0.0.0/8 null0 255 @end example This will install a multihop route via the specified next-hops if they are reachable, as well as a high-metric blackhole route, which can be useful to prevent traffic destined for a prefix to match less-specific routes (eg default) should the specified gateways not be reachable. Eg: @example zebra> show ip route 10.0.0.0/8 Routing entry for 10.0.0.0/8 Known via "static", distance 1, metric 0 10.0.0.2 inactive 10.0.0.3 inactive Routing entry for 10.0.0.0/8 Known via "static", distance 255, metric 0 directly connected, Null0 @end example @deffn Command {ipv6 route @var{network} @var{gateway}} {} @deffnx Command {ipv6 route @var{network} @var{gateway} @var{distance}} {} These behave similarly to their ipv4 counterparts. @end deffn @deffn Command {table @var{tableno}} {} Select the primary kernel routing table to be used. This only works for kernels supporting multiple routing tables (like GNU/Linux 2.2.x and later). After setting @var{tableno} with this command, static routes defined after this are added to the specified table. @end deffn @node zebra Route Filtering @section zebra Route Filtering Zebra supports @command{prefix-list} and @command{route-map} to match routes received from other quagga components. The @command{permit}/@command{deny} facilities provided by these commands can be used to filter which routes zebra will install in the kernel. @deffn Command {ip protocol @var{protocol} route-map @var{routemap}} {} Apply a route-map filter to routes for the specified protocol. @var{protocol} can be @b{any} or one of @b{system}, @b{kernel}, @b{connected}, @b{static}, @b{rip}, @b{ripng}, @b{ospf}, @b{ospf6}, @b{isis}, @b{bgp}, @b{hsls}. @end deffn @deffn {Route Map} {set src @var{address}} Within a route-map, set the preferred source address for matching routes when installing in the kernel. @end deffn @example The following creates a prefix-list that matches all addresses, a route-map that sets the preferred source address, and applies the route-map to all @command{rip} routes. @group ip prefix-list ANY permit 0.0.0.0/0 le 32 route-map RM1 permit 10 match ip address prefix-list ANY set src 10.0.0.1 ip protocol rip route-map RM1 @end group @end example @node zebra Terminal Mode Commands @section zebra Terminal Mode Commands @deffn Command {show ip route} {} Display current routes which zebra holds in its database. @example @group Router# show ip route Codes: K - kernel route, C - connected, S - static, R - RIP, B - BGP * - FIB route. K* 0.0.0.0/0 203.181.89.241 S 0.0.0.0/0 203.181.89.1 C* 127.0.0.0/8 lo C* 203.181.89.240/28 eth0 @end group @end example @end deffn @deffn Command {show ipv6 route} {} @end deffn @deffn Command {show interface} {} @end deffn @deffn Command {show ip prefix-list [@var{name}]} {} @end deffn @deffn Command {show route-map [@var{name}]} {} @end deffn @deffn Command {show ip protocol} {} @end deffn @deffn Command {show ipforward} {} Display whether the host's IP forwarding function is enabled or not. Almost any UNIX kernel can be configured with IP forwarding disabled. If so, the box can't work as a router. @end deffn @deffn Command {show ipv6forward} {} Display whether the host's IP v6 forwarding is enabled or not. @end deffn