/* * Routing Table functions. * Copyright (C) 1998 Kunihiro Ishiguro * * This file is part of GNU Zebra. * * GNU Zebra is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * GNU Zebra is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Zebra; see the file COPYING. If not, write to the Free * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include #include "prefix.h" #include "table.h" #include "memory.h" #include "sockunion.h" void route_node_delete (struct route_node *); void route_table_free (struct route_table *); struct route_table * route_table_init (void) { struct route_table *rt; rt = XCALLOC (MTYPE_ROUTE_TABLE, sizeof (struct route_table)); return rt; } void route_table_finish (struct route_table *rt) { route_table_free (rt); } /* Allocate new route node. */ struct route_node * route_node_new () { struct route_node *node; node = XCALLOC (MTYPE_ROUTE_NODE, sizeof (struct route_node)); return node; } /* Allocate new route node with prefix set. */ struct route_node * route_node_set (struct route_table *table, struct prefix *prefix) { struct route_node *node; node = route_node_new (); prefix_copy (&node->p, prefix); node->table = table; return node; } /* Free route node. */ void route_node_free (struct route_node *node) { XFREE (MTYPE_ROUTE_NODE, node); } /* Free route table. */ void route_table_free (struct route_table *rt) { struct route_node *tmp_node; struct route_node *node; if (rt == NULL) return; node = rt->top; while (node) { if (node->l_left) { node = node->l_left; continue; } if (node->l_right) { node = node->l_right; continue; } tmp_node = node; node = node->parent; if (node != NULL) { if (node->l_left == tmp_node) node->l_left = NULL; else node->l_right = NULL; route_node_free (tmp_node); } else { route_node_free (tmp_node); break; } } XFREE (MTYPE_ROUTE_TABLE, rt); return; } /* Utility mask array. */ static u_char maskbit[] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff }; /* Common prefix route genaration. */ static void route_common (struct prefix *n, struct prefix *p, struct prefix *new) { int i; u_char diff; u_char mask; u_char *np = (u_char *)&n->u.prefix; u_char *pp = (u_char *)&p->u.prefix; u_char *newp = (u_char *)&new->u.prefix; for (i = 0; i < p->prefixlen / 8; i++) { if (np[i] == pp[i]) newp[i] = np[i]; else break; } new->prefixlen = i * 8; if (new->prefixlen != p->prefixlen) { diff = np[i] ^ pp[i]; mask = 0x80; while (new->prefixlen < p->prefixlen && !(mask & diff)) { mask >>= 1; new->prefixlen++; } newp[i] = np[i] & maskbit[new->prefixlen % 8]; } } /* Macro version of check_bit (). */ #define CHECK_BIT(X,P) ((((u_char *)(X))[(P) / 8]) >> (7 - ((P) % 8)) & 1) /* Check bit of the prefix. */ static int check_bit (u_char *prefix, u_char prefixlen) { int offset; int shift; u_char *p = (u_char *)prefix; assert (prefixlen <= 128); offset = prefixlen / 8; shift = 7 - (prefixlen % 8); return (p[offset] >> shift & 1); } /* Macro version of set_link (). */ #define SET_LINK(X,Y) do { (X)->link[CHECK_BIT(&(Y)->p.u.prefix,(X)->p.prefixlen)] = (Y);\ (Y)->parent = (X); } while (0) static void set_link (struct route_node *node, struct route_node *new) { int bit; bit = check_bit (&new->p.u.prefix, node->p.prefixlen); assert (bit == 0 || bit == 1); node->link[bit] = new; new->parent = node; } /* Lock node. */ struct route_node * route_lock_node (struct route_node *node) { node->lock++; return node; } /* Unlock node. */ void route_unlock_node (struct route_node *node) { node->lock--; if (node->lock == 0) route_node_delete (node); } /* Dump routing table. */ void route_dump_node (struct route_table *t) { struct route_node *node; char buf[46]; for (node = route_top (t); node != NULL; node = route_next (node)) { printf ("[%d] %p %s/%d\n", node->lock, node->info, inet_ntop (node->p.family, &node->p.u.prefix, buf, 46), node->p.prefixlen); } } /* Find matched prefix. */ struct route_node * route_node_match (struct route_table *table, struct prefix *p) { struct route_node *node; struct route_node *matched; matched = NULL; node = table->top; /* Walk down tree. If there is matched route then store it to matched. */ while (node && node->p.prefixlen <= p->prefixlen && prefix_match (&node->p, p)) { if (node->info) matched = node; node = node->link[check_bit(&p->u.prefix, node->p.prefixlen)]; } /* If matched route found, return it. */ if (matched) return route_lock_node (matched); return NULL; } struct route_node * route_node_match_ipv4 (struct route_table *table, struct in_addr *addr) { struct prefix_ipv4 p; memset (&p, 0, sizeof (struct prefix_ipv4)); p.family = AF_INET; p.prefixlen = IPV4_MAX_PREFIXLEN; p.prefix = *addr; return route_node_match (table, (struct prefix *) &p); } #ifdef HAVE_IPV6 struct route_node * route_node_match_ipv6 (struct route_table *table, struct in6_addr *addr) { struct prefix_ipv6 p; memset (&p, 0, sizeof (struct prefix_ipv6)); p.family = AF_INET6; p.prefixlen = IPV6_MAX_PREFIXLEN; p.prefix = *addr; return route_node_match (table, (struct prefix *) &p); } #endif /* HAVE_IPV6 */ /* Lookup same prefix node. Return NULL when we can't find route. */ struct route_node * route_node_lookup (struct route_table *table, struct prefix *p) { struct route_node *node; node = table->top; while (node && node->p.prefixlen <= p->prefixlen && prefix_match (&node->p, p)) { if (node->p.prefixlen == p->prefixlen && node->info) return route_lock_node (node); node = node->link[check_bit(&p->u.prefix, node->p.prefixlen)]; } return NULL; } /* Add node to routing table. */ struct route_node * route_node_get (struct route_table *table, struct prefix *p) { struct route_node *new; struct route_node *node; struct route_node *match; match = NULL; node = table->top; while (node && node->p.prefixlen <= p->prefixlen && prefix_match (&node->p, p)) { if (node->p.prefixlen == p->prefixlen) { route_lock_node (node); return node; } match = node; node = node->link[check_bit(&p->u.prefix, node->p.prefixlen)]; } if (node == NULL) { new = route_node_set (table, p); if (match) set_link (match, new); else table->top = new; } else { new = route_node_new (); route_common (&node->p, p, &new->p); new->p.family = p->family; new->table = table; set_link (new, node); if (match) set_link (match, new); else table->top = new; if (new->p.prefixlen != p->prefixlen) { match = new; new = route_node_set (table, p); set_link (match, new); } } route_lock_node (new); return new; } /* Delete node from the routing table. */ void route_node_delete (struct route_node *node) { struct route_node *child; struct route_node *parent; assert (node->lock == 0); assert (node->info == NULL); if (node->l_left && node->l_right) return; if (node->l_left) child = node->l_left; else child = node->l_right; parent = node->parent; if (child) child->parent = parent; if (parent) { if (parent->l_left == node) parent->l_left = child; else parent->l_right = child; } else node->table->top = child; route_node_free (node); /* If parent node is stub then delete it also. */ if (parent && parent->lock == 0) route_node_delete (parent); } /* Get fist node and lock it. This function is useful when one want to lookup all the node exist in the routing table. */ struct route_node * route_top (struct route_table *table) { /* If there is no node in the routing table return NULL. */ if (table->top == NULL) return NULL; /* Lock the top node and return it. */ route_lock_node (table->top); return table->top; } /* Unlock current node and lock next node then return it. */ struct route_node * route_next (struct route_node *node) { struct route_node *next; struct route_node *start; /* Node may be deleted from route_unlock_node so we have to preserve next node's pointer. */ if (node->l_left) { next = node->l_left; route_lock_node (next); route_unlock_node (node); return next; } if (node->l_right) { next = node->l_right; route_lock_node (next); route_unlock_node (node); return next; } start = node; while (node->parent) { if (node->parent->l_left == node && node->parent->l_right) { next = node->parent->l_right; route_lock_node (next); route_unlock_node (start); return next; } node = node->parent; } route_unlock_node (start); return NULL; } /* Unlock current node and lock next node until limit. */ struct route_node * route_next_until (struct route_node *node, struct route_node *limit) { struct route_node *next; struct route_node *start; /* Node may be deleted from route_unlock_node so we have to preserve next node's pointer. */ if (node->l_left) { next = node->l_left; route_lock_node (next); route_unlock_node (node); return next; } if (node->l_right) { next = node->l_right; route_lock_node (next); route_unlock_node (node); return next; } start = node; while (node->parent && node != limit) { if (node->parent->l_left == node && node->parent->l_right) { next = node->parent->l_right; route_lock_node (next); route_unlock_node (start); return next; } node = node->parent; } route_unlock_node (start); return NULL; }