/* OSPF SPF calculation. Copyright (C) 1999, 2000 Kunihiro Ishiguro, Toshiaki Takada This file is part of GNU Zebra. GNU Zebra is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Zebra is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Zebra; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "thread.h" #include "memory.h" #include "hash.h" #include "linklist.h" #include "prefix.h" #include "if.h" #include "table.h" #include "log.h" #include "sockunion.h" /* for inet_ntop () */ #include "ospfd/ospfd.h" #include "ospfd/ospf_interface.h" #include "ospfd/ospf_ism.h" #include "ospfd/ospf_asbr.h" #include "ospfd/ospf_lsa.h" #include "ospfd/ospf_lsdb.h" #include "ospfd/ospf_neighbor.h" #include "ospfd/ospf_nsm.h" #include "ospfd/ospf_spf.h" #include "ospfd/ospf_route.h" #include "ospfd/ospf_ia.h" #include "ospfd/ospf_ase.h" #include "ospfd/ospf_abr.h" #include "ospfd/ospf_dump.h" #define DEBUG struct vertex_nexthop * vertex_nexthop_new (struct vertex *parent) { struct vertex_nexthop *new; new = XCALLOC (MTYPE_OSPF_NEXTHOP, sizeof (struct vertex_nexthop)); new->parent = parent; return new; } void vertex_nexthop_free (struct vertex_nexthop *nh) { XFREE (MTYPE_OSPF_NEXTHOP, nh); } struct vertex_nexthop * vertex_nexthop_dup (struct vertex_nexthop *nh) { struct vertex_nexthop *new; new = vertex_nexthop_new (nh->parent); new->oi = nh->oi; new->router = nh->router; return new; } struct vertex * ospf_vertex_new (struct ospf_lsa *lsa) { struct vertex *new; new = XMALLOC (MTYPE_OSPF_VERTEX, sizeof (struct vertex)); memset (new, 0, sizeof (struct vertex)); new->flags = 0; new->type = lsa->data->type; new->id = lsa->data->id; new->lsa = lsa->data; new->distance = 0; new->child = list_new (); new->nexthop = list_new (); new->backlink = -1; return new; } void ospf_vertex_free (struct vertex *v) { listnode node; list_delete (v->child); if (listcount (v->nexthop) > 0) for (node = listhead (v->nexthop); node; nextnode (node)) vertex_nexthop_free (node->data); list_delete (v->nexthop); XFREE (MTYPE_OSPF_VERTEX, v); } void ospf_vertex_add_parent (struct vertex *v) { struct vertex_nexthop *nh; listnode node; for (node = listhead (v->nexthop); node; nextnode (node)) { nh = (struct vertex_nexthop *) getdata (node); /* No need to add two links from the same parent. */ if (listnode_lookup (nh->parent->child, v) == NULL) listnode_add (nh->parent->child, v); } } void ospf_spf_init (struct ospf_area *area) { struct vertex *v; /* Create root node. */ v = ospf_vertex_new (area->router_lsa_self); area->spf = v; /* Reset ABR and ASBR router counts. */ area->abr_count = 0; area->asbr_count = 0; } int ospf_spf_has_vertex (struct route_table *rv, struct route_table *nv, struct lsa_header *lsa) { struct prefix p; struct route_node *rn; p.family = AF_INET; p.prefixlen = IPV4_MAX_BITLEN; p.u.prefix4 = lsa->id; if (lsa->type == OSPF_ROUTER_LSA) rn = route_node_get (rv, &p); else rn = route_node_get (nv, &p); if (rn->info != NULL) { route_unlock_node (rn); return 1; } return 0; } listnode ospf_vertex_lookup (list vlist, struct in_addr id, int type) { listnode node; struct vertex *v; for (node = listhead (vlist); node; nextnode (node)) { v = (struct vertex *) getdata (node); if (IPV4_ADDR_SAME (&id, &v->id) && type == v->type) return node; } return NULL; } /* return index of link back to V from W, or -1 if no link found */ int ospf_lsa_has_link (struct lsa_header *w, struct lsa_header *v) { int i; int length; struct router_lsa *rl; struct network_lsa *nl; /* In case of W is Network LSA. */ if (w->type == OSPF_NETWORK_LSA) { if (v->type == OSPF_NETWORK_LSA) return -1; nl = (struct network_lsa *) w; length = (ntohs (w->length) - OSPF_LSA_HEADER_SIZE - 4) / 4; for (i = 0; i < length; i++) if (IPV4_ADDR_SAME (&nl->routers[i], &v->id)) return i; return -1; } /* In case of W is Router LSA. */ if (w->type == OSPF_ROUTER_LSA) { rl = (struct router_lsa *) w; length = ntohs (w->length); for (i = 0; i < ntohs (rl->links) && length >= sizeof (struct router_lsa); i++, length -= 12) { switch (rl->link[i].type) { case LSA_LINK_TYPE_POINTOPOINT: case LSA_LINK_TYPE_VIRTUALLINK: /* Router LSA ID. */ if (v->type == OSPF_ROUTER_LSA && IPV4_ADDR_SAME (&rl->link[i].link_id, &v->id)) { return i; } break; case LSA_LINK_TYPE_TRANSIT: /* Network LSA ID. */ if (v->type == OSPF_NETWORK_LSA && IPV4_ADDR_SAME (&rl->link[i].link_id, &v->id)) { return i; } break; case LSA_LINK_TYPE_STUB: /* Not take into count? */ continue; default: break; } } } return -1; } /* Add the nexthop to the list, only if it is unique. * If it's not unique, free the nexthop entry. */ void ospf_nexthop_add_unique (struct vertex_nexthop *new, list nexthop) { struct vertex_nexthop *nh; listnode node; int match; match = 0; for (node = listhead (nexthop); node; nextnode (node)) { nh = node->data; /* Compare the two entries. */ /* XXX * Comparing the parent preserves the shortest path tree * structure even when the nexthops are identical. */ if (nh->oi == new->oi && IPV4_ADDR_SAME (&nh->router, &new->router) && nh->parent == new->parent) { match = 1; break; } } if (!match) listnode_add (nexthop, new); else vertex_nexthop_free (new); } /* Merge entries in list b into list a. */ void ospf_nexthop_merge (list a, list b) { struct listnode *n; for (n = listhead (b); n; nextnode (n)) { ospf_nexthop_add_unique (n->data, a); } } #define ROUTER_LSA_MIN_SIZE 12 #define ROUTER_LSA_TOS_SIZE 4 struct router_lsa_link * ospf_get_next_link (struct vertex *v, struct vertex *w, struct router_lsa_link *prev_link) { u_char *p; u_char *lim; struct router_lsa_link *l; if (prev_link == NULL) p = ((u_char *) v->lsa) + 24; else { p = (u_char *) prev_link; p += (ROUTER_LSA_MIN_SIZE + (prev_link->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); } lim = ((u_char *) v->lsa) + ntohs (v->lsa->length); while (p < lim) { l = (struct router_lsa_link *) p; p += (ROUTER_LSA_MIN_SIZE + (l->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); if (l->m[0].type == LSA_LINK_TYPE_STUB) continue; /* Defer NH calculation via VLs until summaries from transit areas area confidered */ if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) continue; if (IPV4_ADDR_SAME (&l->link_id, &w->id)) return l; } return NULL; } /* Consider supplied next-hop for inclusion to the supplied list * of next-hops, adjust list as neccessary */ void ospf_spf_consider_nexthop (struct list *nexthops, struct vertex_nexthop *newhop) { struct listnode *nnode; struct vertex_nexthop *hop; LIST_LOOP (nexthops, hop, nnode) { assert (hop->oi); /* weed out hops with higher cost than the newhop */ if (hop->oi->output_cost > newhop->oi->output_cost) { /* delete the existing nexthop */ listnode_delete (nexthops, hop); vertex_nexthop_free (hop); } else if (hop->oi->output_cost < newhop->oi->output_cost) { return; } } /* new hop is <= existing hops, add it */ listnode_add (nexthops, newhop); return; } /* Calculate nexthop from root to vertex W. */ void ospf_nexthop_calculation (struct ospf_area *area, struct vertex *v, struct vertex *w) { listnode node; struct vertex_nexthop *nh, *x; struct ospf_interface *oi = NULL; struct router_lsa_link *l = NULL; if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_nexthop_calculation(): Start"); /* W's parent is root. */ if (v == area->spf) { if (w->type == OSPF_VERTEX_ROUTER) { while ((l = ospf_get_next_link (v, w, l))) { struct router_lsa_link *l2 = NULL; if (l->m[0].type == LSA_LINK_TYPE_POINTOPOINT) { /* Check for PtMP, signified by PtP link V->W with link_data our PtMP interface. */ oi = ospf_if_is_configured (area->ospf, &l->link_data); if (oi && oi->type == OSPF_IFTYPE_POINTOMULTIPOINT) { struct prefix_ipv4 la; la.prefixlen = oi->address->prefixlen; /* We link to them on PtMP interface - find the interface on w */ while ((l2 = ospf_get_next_link (w, v, l2))) { la.prefix = l2->link_data; if (prefix_cmp ((struct prefix *) &la, oi->address) == 0) /* link_data is on our PtMP network */ break; } } else { while ((l2 = ospf_get_next_link (w, v, l2))) { oi = ospf_if_is_configured (area->ospf, &(l2->link_data)); if (oi == NULL) continue; if (!IPV4_ADDR_SAME (&oi->address->u.prefix4, &l->link_data)) continue; break; } } if (oi && l2) { nh = vertex_nexthop_new (v); nh->oi = oi; nh->router = l2->link_data; ospf_spf_consider_nexthop (w->nexthop, nh); } } } } else { while ((l = ospf_get_next_link (v, w, l))) { oi = ospf_if_is_configured (area->ospf, &(l->link_data)); if (oi) { nh = vertex_nexthop_new (v); nh->oi = oi; nh->router.s_addr = 0; listnode_add (w->nexthop, nh); } } } return; } /* In case of W's parent is network connected to root. */ else if (v->type == OSPF_VERTEX_NETWORK) { for (node = listhead (v->nexthop); node; nextnode (node)) { x = (struct vertex_nexthop *) getdata (node); if (x->parent == area->spf) { while ((l = ospf_get_next_link (w, v, l))) { nh = vertex_nexthop_new (v); nh->oi = x->oi; nh->router = l->link_data; listnode_add (w->nexthop, nh); } return; } } } /* Inherit V's nexthop. */ for (node = listhead (v->nexthop); node; nextnode (node)) { nh = vertex_nexthop_dup (node->data); nh->parent = v; ospf_nexthop_add_unique (nh, w->nexthop); } } void ospf_install_candidate (list candidate, struct vertex *w) { listnode node; struct vertex *cw; if (list_isempty (candidate)) { listnode_add (candidate, w); return; } /* Install vertex with sorting by distance. */ for (node = listhead (candidate); node; nextnode (node)) { cw = (struct vertex *) getdata (node); if (cw->distance > w->distance) { list_add_node_prev (candidate, node, w); break; } else if (node->next == NULL) { list_add_node_next (candidate, node, w); break; } } } /* RFC2328 Section 16.1 (2). */ void ospf_spf_next (struct vertex *v, struct ospf_area *area, list candidate, struct route_table *rv, struct route_table *nv) { struct ospf_lsa *w_lsa = NULL; struct vertex *w, *cw; u_char *p; u_char *lim; struct router_lsa_link *l = NULL; struct in_addr *r; listnode node; int type = 0; /* If this is a router-LSA, and bit V of the router-LSA (see Section A.4.2:RFC2328) is set, set Area A's TransitCapability to TRUE. */ if (v->type == OSPF_VERTEX_ROUTER) { if (IS_ROUTER_LSA_VIRTUAL ((struct router_lsa *) v->lsa)) area->transit = OSPF_TRANSIT_TRUE; } p = ((u_char *) v->lsa) + OSPF_LSA_HEADER_SIZE + 4; lim = ((u_char *) v->lsa) + ntohs (v->lsa->length); while (p < lim) { int link = -1; /* link index for w's back link */ /* In case of V is Router-LSA. */ if (v->lsa->type == OSPF_ROUTER_LSA) { l = (struct router_lsa_link *) p; p += (ROUTER_LSA_MIN_SIZE + (l->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); /* (a) If this is a link to a stub network, examine the next link in V's LSA. Links to stub networks will be considered in the second stage of the shortest path calculation. */ if ((type = l->m[0].type) == LSA_LINK_TYPE_STUB) continue; /* (b) Otherwise, W is a transit vertex (router or transit network). Look up the vertex W's LSA (router-LSA or network-LSA) in Area A's link state database. */ switch (type) { case LSA_LINK_TYPE_POINTOPOINT: case LSA_LINK_TYPE_VIRTUALLINK: if (type == LSA_LINK_TYPE_VIRTUALLINK) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("looking up LSA through VL: %s", inet_ntoa (l->link_id)); } w_lsa = ospf_lsa_lookup (area, OSPF_ROUTER_LSA, l->link_id, l->link_id); if (w_lsa) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("found the LSA"); } break; case LSA_LINK_TYPE_TRANSIT: if (IS_DEBUG_OSPF_EVENT) zlog_info ("Looking up Network LSA, ID: %s", inet_ntoa (l->link_id)); w_lsa = ospf_lsa_lookup_by_id (area, OSPF_NETWORK_LSA, l->link_id); if (w_lsa) if (IS_DEBUG_OSPF_EVENT) zlog_info ("found the LSA"); break; default: zlog_warn ("Invalid LSA link type %d", type); continue; } } else { /* In case of V is Network-LSA. */ r = (struct in_addr *) p; p += sizeof (struct in_addr); /* Lookup the vertex W's LSA. */ w_lsa = ospf_lsa_lookup_by_id (area, OSPF_ROUTER_LSA, *r); } /* (b cont.) If the LSA does not exist, or its LS age is equal to MaxAge, or it does not have a link back to vertex V, examine the next link in V's LSA.[23] */ if (w_lsa == NULL) continue; if (IS_LSA_MAXAGE (w_lsa)) continue; if ( (link = ospf_lsa_has_link (w_lsa->data, v->lsa)) < 0 ) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("The LSA doesn't have a link back"); continue; } /* (c) If vertex W is already on the shortest-path tree, examine the next link in the LSA. */ if (ospf_spf_has_vertex (rv, nv, w_lsa->data)) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("The LSA is already in SPF"); continue; } /* (d) Calculate the link state cost D of the resulting path from the root to vertex W. D is equal to the sum of the link state cost of the (already calculated) shortest path to vertex V and the advertised cost of the link between vertices V and W. If D is: */ /* prepare vertex W. */ w = ospf_vertex_new (w_lsa); /* Save W's back link index number, for use by virtual links */ w->backlink = link; /* calculate link cost D. */ if (v->lsa->type == OSPF_ROUTER_LSA) w->distance = v->distance + ntohs (l->m[0].metric); else w->distance = v->distance; /* Is there already vertex W in candidate list? */ node = ospf_vertex_lookup (candidate, w->id, w->type); if (node == NULL) { /* Calculate nexthop to W. */ ospf_nexthop_calculation (area, v, w); ospf_install_candidate (candidate, w); } else { cw = (struct vertex *) getdata (node); /* if D is greater than. */ if (cw->distance < w->distance) { ospf_vertex_free (w); continue; } /* equal to. */ else if (cw->distance == w->distance) { /* Calculate nexthop to W. */ ospf_nexthop_calculation (area, v, w); ospf_nexthop_merge (cw->nexthop, w->nexthop); list_delete_all_node (w->nexthop); ospf_vertex_free (w); } /* less than. */ else { /* Calculate nexthop. */ ospf_nexthop_calculation (area, v, w); /* Remove old vertex from candidate list. */ ospf_vertex_free (cw); listnode_delete (candidate, cw); /* Install new to candidate. */ ospf_install_candidate (candidate, w); } } } } /* Add vertex V to SPF tree. */ void ospf_spf_register (struct vertex *v, struct route_table *rv, struct route_table *nv) { struct prefix p; struct route_node *rn; p.family = AF_INET; p.prefixlen = IPV4_MAX_BITLEN; p.u.prefix4 = v->id; if (v->type == OSPF_VERTEX_ROUTER) rn = route_node_get (rv, &p); else rn = route_node_get (nv, &p); rn->info = v; } void ospf_spf_route_free (struct route_table *table) { struct route_node *rn; struct vertex *v; for (rn = route_top (table); rn; rn = route_next (rn)) { if ((v = rn->info)) { ospf_vertex_free (v); rn->info = NULL; } route_unlock_node (rn); } route_table_finish (table); } void ospf_spf_dump (struct vertex *v, int i) { listnode cnode; listnode nnode; struct vertex_nexthop *nexthop; if (v->type == OSPF_VERTEX_ROUTER) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF Result: %d [R] %s", i, inet_ntoa (v->lsa->id)); } else { struct network_lsa *lsa = (struct network_lsa *) v->lsa; if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF Result: %d [N] %s/%d", i, inet_ntoa (v->lsa->id), ip_masklen (lsa->mask)); for (nnode = listhead (v->nexthop); nnode; nextnode (nnode)) { nexthop = getdata (nnode); if (IS_DEBUG_OSPF_EVENT) zlog_info (" nexthop %s", inet_ntoa (nexthop->router)); } } i++; for (cnode = listhead (v->child); cnode; nextnode (cnode)) { v = getdata (cnode); ospf_spf_dump (v, i); } } /* Second stage of SPF calculation. */ void ospf_spf_process_stubs (struct ospf_area *area, struct vertex *v, struct route_table *rt) { listnode cnode; struct vertex *child; if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_process_stub():processing stubs for area %s", inet_ntoa (area->area_id)); if (v->type == OSPF_VERTEX_ROUTER) { u_char *p; u_char *lim; struct router_lsa_link *l; struct router_lsa *rlsa; if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_process_stub():processing router LSA, id: %s", inet_ntoa (v->lsa->id)); rlsa = (struct router_lsa *) v->lsa; if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_process_stub(): we have %d links to process", ntohs (rlsa->links)); p = ((u_char *) v->lsa) + 24; lim = ((u_char *) v->lsa) + ntohs (v->lsa->length); while (p < lim) { l = (struct router_lsa_link *) p; p += (ROUTER_LSA_MIN_SIZE + (l->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); if (l->m[0].type == LSA_LINK_TYPE_STUB) ospf_intra_add_stub (rt, l, v, area); } } if (IS_DEBUG_OSPF_EVENT) zlog_info ("children of V:"); for (cnode = listhead (v->child); cnode; nextnode (cnode)) { child = getdata (cnode); if (IS_DEBUG_OSPF_EVENT) zlog_info (" child : %s", inet_ntoa (child->id)); } for (cnode = listhead (v->child); cnode; nextnode (cnode)) { child = getdata (cnode); if (CHECK_FLAG (child->flags, OSPF_VERTEX_PROCESSED)) continue; ospf_spf_process_stubs (area, child, rt); SET_FLAG (child->flags, OSPF_VERTEX_PROCESSED); } } void ospf_rtrs_free (struct route_table *rtrs) { struct route_node *rn; list or_list; listnode node; if (IS_DEBUG_OSPF_EVENT) zlog_info ("Route: Router Routing Table free"); for (rn = route_top (rtrs); rn; rn = route_next (rn)) if ((or_list = rn->info) != NULL) { for (node = listhead (or_list); node; nextnode (node)) ospf_route_free (node->data); list_delete (or_list); /* Unlock the node. */ rn->info = NULL; route_unlock_node (rn); } route_table_finish (rtrs); } void ospf_rtrs_print (struct route_table *rtrs) { struct route_node *rn; list or_list; listnode ln; listnode pnode; struct ospf_route *or; struct ospf_path *path; char buf1[BUFSIZ]; char buf2[BUFSIZ]; if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_rtrs_print() start"); for (rn = route_top (rtrs); rn; rn = route_next (rn)) if ((or_list = rn->info) != NULL) for (ln = listhead (or_list); ln; nextnode (ln)) { or = getdata (ln); switch (or->path_type) { case OSPF_PATH_INTRA_AREA: if (IS_DEBUG_OSPF_EVENT) zlog_info ("%s [%d] area: %s", inet_ntop (AF_INET, &or->id, buf1, BUFSIZ), or->cost, inet_ntop (AF_INET, &or->u.std.area_id, buf2, BUFSIZ)); break; case OSPF_PATH_INTER_AREA: if (IS_DEBUG_OSPF_EVENT) zlog_info ("%s IA [%d] area: %s", inet_ntop (AF_INET, &or->id, buf1, BUFSIZ), or->cost, inet_ntop (AF_INET, &or->u.std.area_id, buf2, BUFSIZ)); break; default: break; } for (pnode = listhead (or->paths); pnode; nextnode (pnode)) { path = getdata (pnode); if (path->nexthop.s_addr == 0) { if (IS_DEBUG_OSPF_EVENT) zlog_info (" directly attached to %s\r\n", IF_NAME (path->oi)); } else { if (IS_DEBUG_OSPF_EVENT) zlog_info (" via %s, %s\r\n", inet_ntoa (path->nexthop), IF_NAME (path->oi)); } } } zlog_info ("ospf_rtrs_print() end"); } /* Calculating the shortest-path tree for an area. */ void ospf_spf_calculate (struct ospf_area *area, struct route_table *new_table, struct route_table *new_rtrs) { list candidate; listnode node; struct vertex *v; struct route_table *rv; struct route_table *nv; if (IS_DEBUG_OSPF_EVENT) { zlog_info ("ospf_spf_calculate: Start"); zlog_info ("ospf_spf_calculate: running Dijkstra for area %s", inet_ntoa (area->area_id)); } /* Check router-lsa-self. If self-router-lsa is not yet allocated, return this area's calculation. */ if (!area->router_lsa_self) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_spf_calculate: " "Skip area %s's calculation due to empty router_lsa_self", inet_ntoa (area->area_id)); return; } /* RFC2328 16.1. (1). */ /* Initialize the algorithm's data structures. */ rv = route_table_init (); nv = route_table_init (); /* Clear the list of candidate vertices. */ candidate = list_new (); /* Initialize the shortest-path tree to only the root (which is the router doing the calculation). */ ospf_spf_init (area); v = area->spf; ospf_spf_register (v, rv, nv); /* Set Area A's TransitCapability to FALSE. */ area->transit = OSPF_TRANSIT_FALSE; area->shortcut_capability = 1; for (;;) { /* RFC2328 16.1. (2). */ ospf_spf_next (v, area, candidate, rv, nv); /* RFC2328 16.1. (3). */ /* If at this step the candidate list is empty, the shortest- path tree (of transit vertices) has been completely built and this stage of the procedure terminates. */ if (listcount (candidate) == 0) break; /* Otherwise, choose the vertex belonging to the candidate list that is closest to the root, and add it to the shortest-path tree (removing it from the candidate list in the process). */ node = listhead (candidate); v = getdata (node); ospf_vertex_add_parent (v); /* Reveve from the candidate list. */ listnode_delete (candidate, v); /* Add to SPF tree. */ ospf_spf_register (v, rv, nv); /* Note that when there is a choice of vertices closest to the root, network vertices must be chosen before router vertices in order to necessarily find all equal-cost paths. */ /* We don't do this at this moment, we should add the treatment above codes. -- kunihiro. */ /* RFC2328 16.1. (4). */ if (v->type == OSPF_VERTEX_ROUTER) ospf_intra_add_router (new_rtrs, v, area); else ospf_intra_add_transit (new_table, v, area); /* RFC2328 16.1. (5). */ /* Iterate the algorithm by returning to Step 2. */ } if (IS_DEBUG_OSPF_EVENT) { ospf_spf_dump (area->spf, 0); ospf_route_table_dump (new_table); } /* Second stage of SPF calculation procedure's */ ospf_spf_process_stubs (area, area->spf, new_table); /* Free all vertices which allocated for SPF calculation */ ospf_spf_route_free (rv); ospf_spf_route_free (nv); /* Free candidate list */ list_free (candidate); /* Increment SPF Calculation Counter. */ area->spf_calculation++; area->ospf->ts_spf = time (NULL); if (IS_DEBUG_OSPF_EVENT) zlog_info ("ospf_spf_calculate: Stop"); } /* Timer for SPF calculation. */ int ospf_spf_calculate_timer (struct thread *thread) { struct ospf *ospf = THREAD_ARG (thread); struct route_table *new_table, *new_rtrs; listnode node; if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF: Timer (SPF calculation expire)"); ospf->t_spf_calc = NULL; /* Allocate new table tree. */ new_table = route_table_init (); new_rtrs = route_table_init (); ospf_vl_unapprove (ospf); /* Calculate SPF for each area. */ for (node = listhead (ospf->areas); node; node = nextnode (node)) ospf_spf_calculate (node->data, new_table, new_rtrs); ospf_vl_shut_unapproved (ospf); ospf_ia_routing (ospf, new_table, new_rtrs); ospf_prune_unreachable_networks (new_table); ospf_prune_unreachable_routers (new_rtrs); /* AS-external-LSA calculation should not be performed here. */ /* If new Router Route is installed, then schedule re-calculate External routes. */ if (1) ospf_ase_calculate_schedule (ospf); ospf_ase_calculate_timer_add (ospf); /* Update routing table. */ ospf_route_install (ospf, new_table); /* Update ABR/ASBR routing table */ if (ospf->old_rtrs) { /* old_rtrs's node holds linked list of ospf_route. --kunihiro. */ /* ospf_route_delete (ospf->old_rtrs); */ ospf_rtrs_free (ospf->old_rtrs); } ospf->old_rtrs = ospf->new_rtrs; ospf->new_rtrs = new_rtrs; if (IS_OSPF_ABR (ospf)) ospf_abr_task (ospf); if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF: calculation complete"); return 0; } /* Add schedule for SPF calculation. To avoid frequenst SPF calc, we set timer for SPF calc. */ void ospf_spf_calculate_schedule (struct ospf *ospf) { time_t ht, delay; if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF: calculation timer scheduled"); /* OSPF instance does not exist. */ if (ospf == NULL) return; /* SPF calculation timer is already scheduled. */ if (ospf->t_spf_calc) { if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF: calculation timer is already scheduled: %p", ospf->t_spf_calc); return; } ht = time (NULL) - ospf->ts_spf; /* Get SPF calculation delay time. */ if (ht < ospf->spf_holdtime) { if (ospf->spf_holdtime - ht < ospf->spf_delay) delay = ospf->spf_delay; else delay = ospf->spf_holdtime - ht; } else delay = ospf->spf_delay; if (IS_DEBUG_OSPF_EVENT) zlog_info ("SPF: calculation timer delay = %ld", (long)delay); ospf->t_spf_calc = thread_add_timer (master, ospf_spf_calculate_timer, ospf, delay); }