/* Reprap firmware based on Sprinter Optimized for Sanguinololu 1.2 and above / RAMPS This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This firmware is a mashup between Sprinter, grbl and parts from marlin. (https://github.com/kliment/Sprinter) Changes by Doppler Michael (midopple) Planner is from Simen Svale Skogsrud https://github.com/simen/grbl Parts of Marlin Firmware from ErikZalm https://github.com/ErikZalm/Marlin-non-gen6 Sprinter Changelog - Look forward function --> calculate 16 Steps forward, get from Firmaware Marlin and Grbl - Stepper control with Timer 1 (Interrupt) - Extruder heating with PID use a Softpwm (Timer 2) with 500 hz to free Timer1 for Steppercontrol - command M220 Sxxx --> tune Printing speed online (+/- 50 %) - G2 / G3 command --> circle function - Baudrate set to 250 kbaud - Testet on Sanguinololu Board - M30 Command can delete files on SD Card - move string to flash to free RAM vor forward planner - M203 Temperature monitor for Repetier Version 1.3.04T - Implement Plannercode from Marlin V1 big thanks to Erik - Stepper interrupt with Step loops - Stepperfrequency 30 Khz - New Command * M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec * M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 * M205 - advanced settings: minimum travel speed S=while printing T=travel only, X= maximum xy jerk, Z=maximum Z jerk, E = max E jerk - Remove unused Variables - Check Uart Puffer while circle processing (CMD: G2 / G3) - Fast Xfer Function --> move Text to Flash - Option to deactivate ARC (G2/G3) function (save flash) - Removed modulo (%) operator, which uses an expensive divide Version 1.3.05T - changed homing function to not conflict with min_software_endstops/max_software_endstops (thanks rGlory) - Changed check in arc_func - Corrected distance calculation. (thanks jv4779) - MAX Feed Rate for Z-Axis reduced to 2 mm/s some Printers had problems with 4 mm/s Version 1.3.06T - the microcontroller can store settings in the EEPROM - M500 - stores paramters in EEPROM - M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). - M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. - M503 - Print settings Version 1.3.07T - Optimize Variable Size (faster Code) - Remove unused Code from Interrupt --> faster ~ 22 us per step - Replace abs with fabs --> Faster and smaler - Add "store_eeprom.cpp" to makefile Version 1.3.08T - If a line starts with ';', it is ignored but comment_mode is reset. A ';' inside a line ignores just the portion following the ';' character. The beginning of the line is still interpreted. - Same fix for SD Card, tested and work Version 1.3.09T - Move SLOWDOWN Function up Version 1.3.10T - Add info to GEN7 Pins - Update pins.h for gen7, working setup for 20MHz - calculate feedrate without extrude before planner block is set - New Board --> GEN7 @ 20 Mhz … - ENDSTOPS_ONLY_FOR_HOMING Option ignore Endstop always --> fault is cleared Version 1.3.11T - fix for broken include in store_eeprom.cpp --> Thanks to kmeehl (issue #145) - Make fastio & Arduino pin numbering consistent for AT90USB128x. --> Thanks to lincomatic - Select Speedtable with F_CPU - Use same Values for Speedtables as Marlin Version 1.3.12T - Fixed arc offset. Version 1.3.13T - Extrudemultiply with code M221 Sxxx (S100 original Extrude value) - use Feedratefactor only when Extrude > 0 - M106 / M107 can drive the FAN with PWM + Port check for not using Timer 1 - Added M93 command. Sends current steps for all axis. - New Option --> FAN_SOFT_PWM, with this option the FAN PWM can use every digital I/O Version 1.3.14T - When endstop is hit count the virtual steps, so the print lose no position when endstop is hit Version 1.3.15T - M206 - set additional homing offset - Option for minimum FAN start speed --> #define MINIMUM_FAN_START_SPEED 50 (set it to zero to deactivate) Version 1.3.16T - Extra Max Feedrate for Retract (MAX_RETRACT_FEEDRATE) Version 1.3.17T - M303 - PID relay autotune possible - G4 Wait until last move is done Version 1.3.18T - Problem with Thermistor 3 table when sensor is broken and temp is -20 °C Version 1.3.19T - Set maximum acceleration. If "steps per unit" is Change the acc were not recalculated - Extra Parameter for Max Extruder Jerk - New Parameter (max_e_jerk) in EEPROM --> Default settings after update ! Version 1.3.20T - fix a few typos and correct english usage - reimplement homing routine as an inline function - refactor eeprom routines to make it possible to modify the value of a single parameter - calculate eeprom parameter addresses based on previous param address plus sizeof(type) - add 0 C point in Thermistortable 7 Version 1.3.21T - M301 set PID Parameter, and Store to EEPROM - If no PID is used, deaktivate Variables for PID settings */ #include #include #include "fastio.h" #include "Configuration.h" #include "pins.h" #include "Sprinter.h" #include "speed_lookuptable.h" #include "heater.h" #ifdef USE_ARC_FUNCTION #include "arc_func.h" #endif #ifdef SDSUPPORT #include "SdFat.h" #endif #ifdef USE_EEPROM_SETTINGS #include "store_eeprom.h" #endif #ifndef CRITICAL_SECTION_START #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli() #define CRITICAL_SECTION_END SREG = _sreg #endif //CRITICAL_SECTION_START void __cxa_pure_virtual(){}; // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes //Implemented Codes //------------------- // G0 -> G1 // G1 - Coordinated Movement X Y Z E // G2 - CW ARC // G3 - CCW ARC // G4 - Dwell S or P // G28 - Home all Axis // G90 - Use Absolute Coordinates // G91 - Use Relative Coordinates // G92 - Set current position to cordinates given //RepRap M Codes // M104 - Set extruder target temp // M105 - Read current temp // M106 - Fan on // M107 - Fan off // M109 - Wait for extruder current temp to reach target temp. // M114 - Display current position //Custom M Codes // M20 - List SD card // M21 - Init SD card // M22 - Release SD card // M23 - Select SD file (M23 filename.g) // M24 - Start/resume SD print // M25 - Pause SD print // M26 - Set SD position in bytes (M26 S12345) // M27 - Report SD print status // M28 - Start SD write (M28 filename.g) // M29 - Stop SD write // - - Delete file on sd card // M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on // M80 - Turn on Power Supply // M81 - Turn off Power Supply // M82 - Set E codes absolute (default) // M83 - Set E codes relative while in Absolute Coordinates (G90) mode // M84 - Disable steppers until next move, // or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. // M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) // M92 - Set axis_steps_per_unit - same syntax as G92 // M93 - Send axis_steps_per_unit // M115 - Capabilities string // M119 - Show Endstopper State // M140 - Set bed target temp // M190 - Wait for bed current temp to reach target temp. // M201 - Set maximum acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec // M203 - Set temperture monitor to Sx // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 // M205 - advanced settings: minimum travel speed S=while printing T=travel only, X=maximum xy jerk, Z=maximum Z jerk // M206 - set additional homing offset // M220 - set speed factor override percentage S=factor in percent // M221 - set extruder multiply factor S100 --> original Extrude Speed // M301 - Set PID parameters P I and D // M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) // M400 - Finish all moves // M500 - stores paramters in EEPROM // M501 - reads parameters from EEPROM (if you need to reset them after you changed them temporarily). // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. // M503 - Print settings // Debug feature / Testing the PID for Hotend // M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperature while printing) // M602 - Reset Temp jitter from Extruder (min / max val) --> Don't use it while Printing // M603 - Show Free Ram #define _VERSION_TEXT "1.3.21T / 17.07.2012" //Stepper Movement Variables char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; float axis_steps_per_unit[4] = _AXIS_STEP_PER_UNIT; float max_feedrate[4] = _MAX_FEEDRATE; float homing_feedrate[] = _HOMING_FEEDRATE; bool axis_relative_modes[] = _AXIS_RELATIVE_MODES; float move_acceleration = _ACCELERATION; // Normal acceleration mm/s^2 float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2 float max_xy_jerk = _MAX_XY_JERK; float max_z_jerk = _MAX_Z_JERK; float max_e_jerk = _MAX_E_JERK; unsigned long min_seg_time = _MIN_SEG_TIME; #ifdef PIDTEMP unsigned int PID_Kp = PID_PGAIN, PID_Ki = PID_IGAIN, PID_Kd = PID_DGAIN; #endif long max_acceleration_units_per_sq_second[4] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts //float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND; //long max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves float mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE; float minimumfeedrate = DEFAULT_MINIMUMFEEDRATE; unsigned long axis_steps_per_sqr_second[NUM_AXIS]; unsigned long plateau_steps; //unsigned long axis_max_interval[NUM_AXIS]; //unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS]; //unsigned long max_interval; //unsigned long steps_per_sqr_second; //adjustable feed factor for online tuning printer speed volatile int feedmultiply=100; //100->original / 200 -> Factor 2 / 50 -> Factor 0.5 int saved_feedmultiply; volatile bool feedmultiplychanged=false; volatile int extrudemultiply=100; //100->1 200->2 //boolean acceleration_enabled = false, accelerating = false; //unsigned long interval; float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; float add_homing[3]={0,0,0}; static unsigned short virtual_steps_x = 0; static unsigned short virtual_steps_y = 0; static unsigned short virtual_steps_z = 0; bool home_all_axis = true; //unsigned ?? ToDo: Check int feedrate = 1500, next_feedrate, saved_feedrate; long gcode_N, gcode_LastN; bool relative_mode = false; //Determines Absolute or Relative Coordinates //unsigned long steps_taken[NUM_AXIS]; //long axis_interval[NUM_AXIS]; // for speed delay //float time_for_move; //bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. //long timediff = 0; bool is_homing = false; //experimental feedrate calc //float d = 0; //float axis_diff[NUM_AXIS] = {0, 0, 0, 0}; #ifdef USE_ARC_FUNCTION //For arc center point coordinates, sent by commands G2/G3 float offset[3] = {0.0, 0.0, 0.0}; #endif #ifdef STEP_DELAY_RATIO long long_step_delay_ratio = STEP_DELAY_RATIO * 100; #endif ///oscillation reduction #ifdef RAPID_OSCILLATION_REDUCTION float cumm_wait_time_in_dir[NUM_AXIS]={0.0,0.0,0.0,0.0}; bool prev_move_direction[NUM_AXIS]={1,1,1,1}; float osc_wait_remainder = 0.0; #endif #if (MINIMUM_FAN_START_SPEED > 0) unsigned char fan_last_speed = 0; unsigned char fan_org_start_speed = 0; unsigned long previous_millis_fan_start = 0; #endif // comm variables and Commandbuffer // BUFSIZE is reduced from 8 to 6 to free more RAM for the PLANNER #define MAX_CMD_SIZE 96 #define BUFSIZE 6 //8 char cmdbuffer[BUFSIZE][MAX_CMD_SIZE]; bool fromsd[BUFSIZE]; //Need 1kb Ram --> only work with Atmega1284 #ifdef SD_FAST_XFER_AKTIV char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1]; int lastxferchar; long xferbytes; #endif unsigned char bufindr = 0; unsigned char bufindw = 0; unsigned char buflen = 0; char serial_char; int serial_count = 0; boolean comment_mode = false; char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc //Send Temperature in °C to Host int hotendtC = 0, bedtempC = 0; //Inactivity shutdown variables unsigned long previous_millis_cmd = 0; unsigned long max_inactive_time = 0; unsigned long stepper_inactive_time = 0; //Temp Monitor for repetier unsigned char manage_monitor = 255; //------------------------------------------------ //Init the SD card //------------------------------------------------ #ifdef SDSUPPORT Sd2Card card; SdVolume volume; SdFile root; SdFile file; uint32_t filesize = 0; uint32_t sdpos = 0; bool sdmode = false; bool sdactive = false; bool savetosd = false; int16_t read_char_int; void initsd() { sdactive = false; #if SDSS >- 1 if(root.isOpen()) root.close(); if (!card.init(SPI_FULL_SPEED,SDSS)){ //if (!card.init(SPI_HALF_SPEED,SDSS)) showString(PSTR("SD init fail\r\n")); } else if (!volume.init(&card)) showString(PSTR("volume.init failed\r\n")); else if (!root.openRoot(&volume)) showString(PSTR("openRoot failed\r\n")); else{ sdactive = true; print_disk_info(); #ifdef SDINITFILE file.close(); if(file.open(&root, "init.g", O_READ)){ sdpos = 0; filesize = file.fileSize(); sdmode = true; } #endif } #endif } #ifdef SD_FAST_XFER_AKTIV #ifdef PIDTEMP extern volatile unsigned char g_heater_pwm_val; #endif void fast_xfer() { char *pstr; boolean done = false; //force heater pins low if(HEATER_0_PIN > -1) WRITE(HEATER_0_PIN,LOW); if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW); #ifdef PIDTEMP g_heater_pwm_val = 0; #endif lastxferchar = 1; xferbytes = 0; pstr = strstr(strchr_pointer+4, " "); if(pstr == NULL) { showString(PSTR("invalid command\r\n")); return; } *pstr = '\0'; //check mode (currently only RAW is supported if(strcmp(strchr_pointer+4, "RAW") != 0) { showString(PSTR("Invalid transfer codec\r\n")); return; }else{ showString(PSTR("Selected codec: ")); Serial.println(strchr_pointer+4); } if (!file.open(&root, pstr+1, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) { showString(PSTR("open failed, File: ")); Serial.print(pstr+1); showString(PSTR(".")); }else{ showString(PSTR("Writing to file: ")); Serial.println(pstr+1); } showString(PSTR("ok\r\n")); //RAW transfer codec //Host sends \0 then up to SD_FAST_XFER_CHUNK_SIZE then \0 //when host is done, it sends \0\0. //if a non \0 character is recieved at the beginning, host has failed somehow, kill the transfer. //read SD_FAST_XFER_CHUNK_SIZE bytes (or until \0 is recieved) while(!done) { while(!Serial.available()) { } if(Serial.read() != 0) { //host has failed, this isn't a RAW chunk, it's an actual command file.sync(); file.close(); return; } for(int i=0;i(__brkval) == 0) { // if no heap use from end of bss section free_memory = reinterpret_cast(&free_memory) - reinterpret_cast(&__bss_end); } else { // use from top of stack to heap free_memory = reinterpret_cast(&free_memory) - reinterpret_cast(__brkval); } return free_memory; } //------------------------------------------------ //Function the check the Analog OUT pin for not using the Timer1 //------------------------------------------------ void analogWrite_check(uint8_t check_pin, int val) { #if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) //Atmega168/328 can't use OCR1A and OCR1B //These are pins PB1/PB2 or on Arduino D9/D10 if((check_pin != 9) && (check_pin != 10)) { analogWrite(check_pin, val); } #endif #if defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__) //Atmega664P/1284P can't use OCR1A and OCR1B //These are pins PD4/PD5 or on Arduino D12/D13 if((check_pin != 12) && (check_pin != 13)) { analogWrite(check_pin, val); } #endif #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //Atmega1280/2560 can't use OCR1A, OCR1B and OCR1C //These are pins PB5,PB6,PB7 or on Arduino D11,D12 and D13 if((check_pin != 11) && (check_pin != 12) && (check_pin != 13)) { analogWrite(check_pin, val); } #endif } //------------------------------------------------ //Print a String from Flash to Serial (save RAM) //------------------------------------------------ void showString (PGM_P s) { char c; while ((c = pgm_read_byte(s++)) != 0) Serial.print(c); } //------------------------------------------------ // Init //------------------------------------------------ void setup() { Serial.begin(BAUDRATE); showString(PSTR("Sprinter\r\n")); showString(PSTR(_VERSION_TEXT)); showString(PSTR("\r\n")); showString(PSTR("start\r\n")); for(int i = 0; i < BUFSIZE; i++) { fromsd[i] = false; } //Initialize Dir Pins #if X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif #if Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #endif #if Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #endif #if E_DIR_PIN > -1 SET_OUTPUT(E_DIR_PIN); #endif //Initialize Enable Pins - steppers default to disabled. #if (X_ENABLE_PIN > -1) SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if (Y_ENABLE_PIN > -1) SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #endif #if (Z_ENABLE_PIN > -1) SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #endif #if (E_ENABLE_PIN > -1) SET_OUTPUT(E_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH); #endif #ifdef CONTROLLERFAN_PIN SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif #ifdef EXTRUDERFAN_PIN SET_OUTPUT(EXTRUDERFAN_PIN); //Set pin used for extruder cooling fan #endif //endstops and pullups #ifdef ENDSTOPPULLUPS #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); WRITE(X_MIN_PIN,HIGH); #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); WRITE(X_MAX_PIN,HIGH); #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); WRITE(Y_MIN_PIN,HIGH); #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); WRITE(Y_MAX_PIN,HIGH); #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); WRITE(Z_MIN_PIN,HIGH); #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); WRITE(Z_MAX_PIN,HIGH); #endif #else #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); #endif #endif #if (HEATER_0_PIN > -1) SET_OUTPUT(HEATER_0_PIN); WRITE(HEATER_0_PIN,LOW); #endif #if (HEATER_1_PIN > -1) SET_OUTPUT(HEATER_1_PIN); WRITE(HEATER_1_PIN,LOW); #endif //Initialize Fan Pin #if (FAN_PIN > -1) SET_OUTPUT(FAN_PIN); #endif //Initialize Alarm Pin #if (ALARM_PIN > -1) SET_OUTPUT(ALARM_PIN); WRITE(ALARM_PIN,LOW); #endif //Initialize LED Pin #if (LED_PIN > -1) SET_OUTPUT(LED_PIN); WRITE(LED_PIN,LOW); #endif //Initialize Step Pins #if (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); #endif #if (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); #endif #if (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); #endif #if (E_STEP_PIN > -1) SET_OUTPUT(E_STEP_PIN); #endif // for(int i=0; i < NUM_AXIS; i++){ // axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]); // axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; // axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; // } #ifdef HEATER_USES_MAX6675 SET_OUTPUT(SCK_PIN); WRITE(SCK_PIN,0); SET_OUTPUT(MOSI_PIN); WRITE(MOSI_PIN,1); SET_INPUT(MISO_PIN); WRITE(MISO_PIN,1); SET_OUTPUT(MAX6675_SS); WRITE(MAX6675_SS,1); #endif #ifdef SDSUPPORT //power to SD reader #if SDPOWER > -1 SET_OUTPUT(SDPOWER); WRITE(SDPOWER,HIGH); #endif showString(PSTR("SD Start\r\n")); initsd(); #endif #if defined(PID_SOFT_PWM) || (defined(FAN_SOFT_PWM) && (FAN_PIN > -1)) showString(PSTR("Soft PWM Init\r\n")); init_Timer2_softpwm(); #endif showString(PSTR("Planner Init\r\n")); plan_init(); // Initialize planner; showString(PSTR("Stepper Timer init\r\n")); st_init(); // Initialize stepper #ifdef USE_EEPROM_SETTINGS //first Value --> Init with default //second value --> Print settings to UART EEPROM_RetrieveSettings(false,false); #endif #ifdef PIDTEMP updatePID(); #endif //Free Ram showString(PSTR("Free Ram: ")); Serial.println(FreeRam1()); //Planner Buffer Size showString(PSTR("Plan Buffer Size:")); Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); showString(PSTR(" / ")); Serial.println(BLOCK_BUFFER_SIZE); for(int8_t i=0; i < NUM_AXIS; i++) { axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; } } //------------------------------------------------ //MAIN LOOP //------------------------------------------------ void loop() { if(buflen < (BUFSIZE-1)) get_command(); if(buflen) { #ifdef SDSUPPORT if(savetosd) { if(strstr(cmdbuffer[bufindr],"M29") == NULL) { write_command(cmdbuffer[bufindr]); showString(PSTR("ok\r\n")); } else { file.sync(); file.close(); savetosd = false; showString(PSTR("Done saving file.\r\n")); } } else { process_commands(); } #else process_commands(); #endif buflen = (buflen-1); //bufindr = (bufindr + 1)%BUFSIZE; //Removed modulo (%) operator, which uses an expensive divide and multiplication bufindr++; if(bufindr == BUFSIZE) bufindr = 0; } //check heater every n milliseconds manage_heater(); manage_inactivity(1); #if (MINIMUM_FAN_START_SPEED > 0) manage_fan_start_speed(); #endif } //------------------------------------------------ //Check Uart buffer while arc function ist calc a circle //------------------------------------------------ void check_buffer_while_arc() { if(buflen < (BUFSIZE-1)) { get_command(); } } //------------------------------------------------ //READ COMMAND FROM UART //------------------------------------------------ void get_command() { while( Serial.available() > 0 && buflen < BUFSIZE) { serial_char = Serial.read(); if(serial_char == '\n' || serial_char == '\r' || (serial_char == ':' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1) ) { if(!serial_count) { //if empty line comment_mode = false; // for new command return; } cmdbuffer[bufindw][serial_count] = 0; //terminate string fromsd[bufindw] = false; if(strstr(cmdbuffer[bufindw], "N") != NULL) { strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10)); if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) { showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:")); Serial.println(gcode_LastN); //Serial.println(gcode_N); FlushSerialRequestResend(); serial_count = 0; return; } if(strstr(cmdbuffer[bufindw], "*") != NULL) { byte checksum = 0; byte count = 0; while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; strchr_pointer = strchr(cmdbuffer[bufindw], '*'); if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) { showString(PSTR("Error: checksum mismatch, Last Line:")); Serial.println(gcode_LastN); FlushSerialRequestResend(); serial_count = 0; return; } //if no errors, continue parsing } else { showString(PSTR("Error: No Checksum with line number, Last Line:")); Serial.println(gcode_LastN); FlushSerialRequestResend(); serial_count = 0; return; } gcode_LastN = gcode_N; //if no errors, continue parsing } else // if we don't receive 'N' but still see '*' { if((strstr(cmdbuffer[bufindw], "*") != NULL)) { showString(PSTR("Error: No Line Number with checksum, Last Line:")); Serial.println(gcode_LastN); serial_count = 0; return; } } if((strstr(cmdbuffer[bufindw], "G") != NULL)) { strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))) { case 0: case 1: #ifdef USE_ARC_FUNCTION case 2: //G2 case 3: //G3 arc func #endif #ifdef SDSUPPORT if(savetosd) break; #endif showString(PSTR("ok\r\n")); //Serial.println("ok"); break; default: break; } } //Removed modulo (%) operator, which uses an expensive divide and multiplication //bufindw = (bufindw + 1)%BUFSIZE; bufindw++; if(bufindw == BUFSIZE) bufindw = 0; buflen += 1; comment_mode = false; //for new command serial_count = 0; //clear buffer } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; } } #ifdef SDSUPPORT if(!sdmode || serial_count!=0) { return; } while( filesize > sdpos && buflen < BUFSIZE) { serial_char = file.read(); read_char_int = (int)serial_char; if(serial_char == '\n' || serial_char == '\r' || (serial_char == ':' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1) || read_char_int == -1) { sdpos = file.curPosition(); if(sdpos >= filesize) { sdmode = false; showString(PSTR("Done printing file\r\n")); } if(!serial_count) { //if empty line comment_mode = false; // for new command return; } cmdbuffer[bufindw][serial_count] = 0; //terminate string fromsd[bufindw] = true; buflen += 1; //Removed modulo (%) operator, which uses an expensive divide and multiplication //bufindw = (bufindw + 1)%BUFSIZE; bufindw++; if(bufindw == BUFSIZE) bufindw = 0; comment_mode = false; //for new command serial_count = 0; //clear buffer } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; } } #endif } static bool check_endstops = true; void enable_endstops(bool check) { check_endstops = check; } FORCE_INLINE float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); } FORCE_INLINE long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); } FORCE_INLINE bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found FORCE_INLINE bool code_seen(char code) { strchr_pointer = strchr(cmdbuffer[bufindr], code); return (strchr_pointer != NULL); //Return True if a character was found } FORCE_INLINE void homing_routine(char axis) { int min_pin, max_pin, home_dir, max_length, home_bounce; switch(axis){ case X_AXIS: min_pin = X_MIN_PIN; max_pin = X_MAX_PIN; home_dir = X_HOME_DIR; max_length = X_MAX_LENGTH; home_bounce = 10; break; case Y_AXIS: min_pin = Y_MIN_PIN; max_pin = Y_MAX_PIN; home_dir = Y_HOME_DIR; max_length = Y_MAX_LENGTH; home_bounce = 10; break; case Z_AXIS: min_pin = Z_MIN_PIN; max_pin = Z_MAX_PIN; home_dir = Z_HOME_DIR; max_length = Z_MAX_LENGTH; home_bounce = 4; break; default: //never reached break; } if ((min_pin > -1 && home_dir==-1) || (max_pin > -1 && home_dir==1)) { current_position[axis] = -1.5 * max_length * home_dir; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 0; feedrate = homing_feedrate[axis]; prepare_move(); st_synchronize(); current_position[axis] = home_bounce/2 * home_dir; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 0; prepare_move(); st_synchronize(); current_position[axis] = -home_bounce * home_dir; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = 0; feedrate = homing_feedrate[axis]/2; prepare_move(); st_synchronize(); current_position[axis] = (home_dir == -1) ? 0 : max_length; current_position[axis] += add_homing[axis]; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); destination[axis] = current_position[axis]; feedrate = 0; } } //------------------------------------------------ // CHECK COMMAND AND CONVERT VALUES //------------------------------------------------ FORCE_INLINE void process_commands() { unsigned long codenum; //throw away variable char *starpos = NULL; if(code_seen('G')) { switch((int)code_value()) { case 0: // G0 -> G1 case 1: // G1 #if (defined DISABLE_CHECK_DURING_ACC) || (defined DISABLE_CHECK_DURING_MOVE) || (defined DISABLE_CHECK_DURING_TRAVEL) manage_heater(); #endif get_coordinates(); // For X Y Z E F prepare_move(); previous_millis_cmd = millis(); //ClearToSend(); return; //break; #ifdef USE_ARC_FUNCTION case 2: // G2 - CW ARC get_arc_coordinates(); prepare_arc_move(true); previous_millis_cmd = millis(); //break; return; case 3: // G3 - CCW ARC get_arc_coordinates(); prepare_arc_move(false); previous_millis_cmd = millis(); //break; return; #endif case 4: // G4 dwell codenum = 0; if(code_seen('P')) codenum = code_value(); // milliseconds to wait if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait codenum += millis(); // keep track of when we started waiting st_synchronize(); // wait for all movements to finish while(millis() < codenum ){ manage_heater(); } break; case 28: //G28 Home all Axis one at a time saved_feedrate = feedrate; saved_feedmultiply = feedmultiply; previous_millis_cmd = millis(); feedmultiply = 100; enable_endstops(true); for(int i=0; i < NUM_AXIS; i++) { destination[i] = current_position[i]; } feedrate = 0; is_homing = true; home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) homing_routine(X_AXIS); if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) homing_routine(Y_AXIS); if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) homing_routine(Z_AXIS); #ifdef ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false); #endif is_homing = false; feedrate = saved_feedrate; feedmultiply = saved_feedmultiply; previous_millis_cmd = millis(); break; case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 if(!code_seen(axis_codes[E_AXIS])) st_synchronize(); for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) current_position[i] = code_value(); } plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); break; default: #ifdef SEND_WRONG_CMD_INFO showString(PSTR("Unknown G-COM:")); Serial.println(cmdbuffer[bufindr]); #endif break; } } else if(code_seen('M')) { switch( (int)code_value() ) { #ifdef SDSUPPORT case 20: // M20 - list SD card showString(PSTR("Begin file list\r\n")); root.ls(); showString(PSTR("End file list\r\n")); break; case 21: // M21 - init SD card sdmode = false; initsd(); break; case 22: //M22 - release SD card sdmode = false; sdactive = false; break; case 23: //M23 - Select file if(sdactive) { sdmode = false; file.close(); starpos = (strchr(strchr_pointer + 4,'*')); if(starpos!=NULL) *(starpos-1)='\0'; if (file.open(&root, strchr_pointer + 4, O_READ)) { showString(PSTR("File opened:")); Serial.print(strchr_pointer + 4); showString(PSTR(" Size:")); Serial.println(file.fileSize()); sdpos = 0; filesize = file.fileSize(); showString(PSTR("File selected\r\n")); } else { showString(PSTR("file.open failed\r\n")); } } break; case 24: //M24 - Start SD print if(sdactive) { sdmode = true; } break; case 25: //M25 - Pause SD print if(sdmode) { sdmode = false; } break; case 26: //M26 - Set SD index if(sdactive && code_seen('S')) { sdpos = code_value_long(); file.seekSet(sdpos); } break; case 27: //M27 - Get SD status if(sdactive) { showString(PSTR("SD printing byte ")); Serial.print(sdpos); showString(PSTR("/")); Serial.println(filesize); } else { showString(PSTR("Not SD printing\r\n")); } break; case 28: //M28 - Start SD write if(sdactive) { char* npos = 0; file.close(); sdmode = false; starpos = (strchr(strchr_pointer + 4,'*')); if(starpos != NULL) { npos = strchr(cmdbuffer[bufindr], 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos-1) = '\0'; } if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) { showString(PSTR("open failed, File: ")); Serial.print(strchr_pointer + 4); showString(PSTR(".")); } else { savetosd = true; showString(PSTR("Writing to file: ")); Serial.println(strchr_pointer + 4); } } break; case 29: //M29 - Stop SD write //processed in write to file routine above //savetosd = false; break; #ifndef SD_FAST_XFER_AKTIV case 30: // M30 filename - Delete file if(sdactive) { sdmode = false; file.close(); starpos = (strchr(strchr_pointer + 4,'*')); if(starpos!=NULL) *(starpos-1)='\0'; if(file.remove(&root, strchr_pointer + 4)) { showString(PSTR("File deleted\r\n")); } else { showString(PSTR("Deletion failed\r\n")); } } break; #else case 30: //M30 - fast SD transfer fast_xfer(); break; case 31: //M31 - high speed xfer capabilities showString(PSTR("RAW:")); Serial.println(SD_FAST_XFER_CHUNK_SIZE); break; #endif #endif case 42: //M42 -Change pin status via gcode if (code_seen('S')) { #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif int pin_status = code_value(); if (code_seen('P') && pin_status >= 0 && pin_status <= 255) { int pin_number = code_value(); for(int i = 0; i < sizeof(sensitive_pins) / sizeof(int); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } if (pin_number > -1) { pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); //analogWrite(pin_number, pin_status); } } } break; case 104: // M104 #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value()); #ifdef WATCHPERIOD if(target_raw > current_raw) { watchmillis = max(1,millis()); watch_raw = current_raw; } else { watchmillis = 0; } #endif break; case 140: // M140 set bed temp #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif #if TEMP_1_PIN > -1 || defined BED_USES_AD595 if (code_seen('S')) target_bed_raw = temp2analogBed(code_value()); #endif break; case 105: // M105 #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595 hotendtC = analog2temp(current_raw); #endif #if TEMP_1_PIN > -1 || defined BED_USES_AD595 bedtempC = analog2tempBed(current_bed_raw); #endif #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595 showString(PSTR("ok T:")); Serial.print(hotendtC); #ifdef PIDTEMP showString(PSTR(" @:")); Serial.print(heater_duty); /* showString(PSTR(",P:")); Serial.print(pTerm); showString(PSTR(",I:")); Serial.print(iTerm); showString(PSTR(",D:")); Serial.print(dTerm); */ #ifdef AUTOTEMP showString(PSTR(",AU:")); Serial.print(autotemp_setpoint); #endif #endif #if TEMP_1_PIN > -1 || defined BED_USES_AD595 showString(PSTR(" B:")); Serial.println(bedtempC); #else Serial.println(); #endif #else #error No temperature source available #endif return; //break; case 109: { // M109 - Wait for extruder heater to reach target. #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value()); #ifdef WATCHPERIOD if(target_raw>current_raw) { watchmillis = max(1,millis()); watch_raw = current_raw; } else { watchmillis = 0; } #endif codenum = millis(); /* See if we are heating up or cooling down */ bool target_direction = (current_raw < target_raw); // true if heating, false if cooling #ifdef TEMP_RESIDENCY_TIME long residencyStart; residencyStart = -1; /* continue to loop until we have reached the target temp _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ while( (target_direction ? (current_raw < target_raw) : (current_raw > target_raw)) || (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) { #else while ( target_direction ? (current_raw < target_raw) : (current_raw > target_raw) ) { #endif if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down { showString(PSTR("T:")); Serial.println( analog2temp(current_raw) ); codenum = millis(); } manage_heater(); #if (MINIMUM_FAN_START_SPEED > 0) manage_fan_start_speed(); #endif #ifdef TEMP_RESIDENCY_TIME /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time or when current temp falls outside the hysteresis after target temp was reached */ if ( (residencyStart == -1 && target_direction && current_raw >= target_raw) || (residencyStart == -1 && !target_direction && current_raw <= target_raw) || (residencyStart > -1 && labs(analog2temp(current_raw) - analog2temp(target_raw)) > TEMP_HYSTERESIS) ) { residencyStart = millis(); } #endif } } break; case 190: // M190 - Wait for bed heater to reach target temperature. #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif #if TEMP_1_PIN > -1 if (code_seen('S')) target_bed_raw = temp2analogBed(code_value()); codenum = millis(); while(current_bed_raw < target_bed_raw) { if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. { hotendtC=analog2temp(current_raw); showString(PSTR("T:")); Serial.print( hotendtC ); showString(PSTR(" B:")); Serial.println( analog2tempBed(current_bed_raw) ); codenum = millis(); } manage_heater(); #if (MINIMUM_FAN_START_SPEED > 0) manage_fan_start_speed(); #endif } #endif break; #if FAN_PIN > -1 case 106: //M106 Fan On #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif if (code_seen('S')) { unsigned char l_fan_code_val = constrain(code_value(),0,255); #if (MINIMUM_FAN_START_SPEED > 0) if(l_fan_code_val > 0 && fan_last_speed == 0) { if(l_fan_code_val < MINIMUM_FAN_START_SPEED) { fan_org_start_speed = l_fan_code_val; l_fan_code_val = MINIMUM_FAN_START_SPEED; previous_millis_fan_start = millis(); } fan_last_speed = l_fan_code_val; } else { fan_last_speed = l_fan_code_val; fan_org_start_speed = 0; } #endif #if defined(FAN_SOFT_PWM) && (FAN_PIN > -1) g_fan_pwm_val = l_fan_code_val; #else WRITE(FAN_PIN, HIGH); analogWrite_check(FAN_PIN, l_fan_code_val; #endif } else { #if defined(FAN_SOFT_PWM) && (FAN_PIN > -1) g_fan_pwm_val = 255; #else WRITE(FAN_PIN, HIGH); analogWrite_check(FAN_PIN, 255 ); #endif } break; case 107: //M107 Fan Off #if defined(FAN_SOFT_PWM) && (FAN_PIN > -1) g_fan_pwm_val = 0; #else analogWrite_check(FAN_PIN, 0); WRITE(FAN_PIN, LOW); #endif break; #endif #if (PS_ON_PIN > -1) case 80: // M81 - ATX Power On SET_OUTPUT(PS_ON_PIN); //GND break; case 81: // M81 - ATX Power Off #ifdef CHAIN_OF_COMMAND st_synchronize(); // wait for all movements to finish #endif SET_INPUT(PS_ON_PIN); //Floating break; #endif case 82: axis_relative_modes[3] = false; break; case 83: axis_relative_modes[3] = true; break; case 84: st_synchronize(); // wait for all movements to finish if(code_seen('S')) { stepper_inactive_time = code_value() * 1000; } else if(code_seen('T')) { enable_x(); enable_y(); enable_z(); enable_e(); } else { disable_x(); disable_y(); disable_z(); disable_e(); } break; case 85: // M85 code_seen('S'); max_inactive_time = code_value() * 1000; break; case 92: // M92 for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { axis_steps_per_unit[i] = code_value(); axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; } } // Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it // should also be used in setup() as well // long temp_max_intervals[NUM_AXIS]; // for(int i=0; i < NUM_AXIS; i++) // { // axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for // all steps_per_unit related variables // } break; case 93: // M93 show current axis steps. showString(PSTR("ok ")); showString(PSTR("X:")); Serial.print(axis_steps_per_unit[0]); showString(PSTR("Y:")); Serial.print(axis_steps_per_unit[1]); showString(PSTR("Z:")); Serial.print(axis_steps_per_unit[2]); showString(PSTR("E:")); Serial.println(axis_steps_per_unit[3]); break; case 115: // M115 showString(PSTR("FIRMWARE_NAME: Sprinter Experimental PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n")); //Serial.println(uuid); showString(PSTR(_DEF_CHAR_UUID)); showString(PSTR("\r\n")); break; case 114: // M114 showString(PSTR("X:")); Serial.print(current_position[0]); showString(PSTR("Y:")); Serial.print(current_position[1]); showString(PSTR("Z:")); Serial.print(current_position[2]); showString(PSTR("E:")); Serial.println(current_position[3]); break; case 119: // M119 #if (X_MIN_PIN > -1) showString(PSTR("x_min:")); Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L "); #endif #if (X_MAX_PIN > -1) showString(PSTR("x_max:")); Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Y_MIN_PIN > -1) showString(PSTR("y_min:")); Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Y_MAX_PIN > -1) showString(PSTR("y_max:")); Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Z_MIN_PIN > -1) showString(PSTR("z_min:")); Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Z_MAX_PIN > -1) showString(PSTR("z_max:")); Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L "); #endif showString(PSTR("\r\n")); break; case 201: // M201 Set maximum acceleration in units/s^2 for print moves (M201 X1000 Y1000) for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) { max_acceleration_units_per_sq_second[i] = code_value(); axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } } break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; #else case 202: // M202 max feedrate mm/sec for(int8_t i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) max_feedrate[i] = code_value(); } break; #endif case 203: // M203 Temperature monitor if(code_seen('S')) manage_monitor = code_value(); if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed break; case 204: // M204 acceleration S normal moves T filmanent only moves if(code_seen('S')) move_acceleration = code_value() ; if(code_seen('T')) retract_acceleration = code_value() ; break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E= max E jerk if(code_seen('S')) minimumfeedrate = code_value(); if(code_seen('T')) mintravelfeedrate = code_value(); //if(code_seen('B')) minsegmenttime = code_value() ; if(code_seen('X')) max_xy_jerk = code_value() ; if(code_seen('Z')) max_z_jerk = code_value() ; if(code_seen('E')) max_e_jerk = code_value() ; break; case 206: // M206 additional homing offset for(int8_t cnt_i=0; cnt_i < 3; cnt_i++) { if(code_seen(axis_codes[cnt_i])) add_homing[cnt_i] = code_value(); } break; case 220: // M220 S- set speed factor override percentage { if(code_seen('S')) { feedmultiply = code_value() ; feedmultiply = constrain(feedmultiply, 20, 200); feedmultiplychanged=true; } } break; case 221: // M221 S- set extrude factor override percentage { if(code_seen('S')) { extrudemultiply = code_value() ; extrudemultiply = constrain(extrudemultiply, 40, 200); } } break; #ifdef PIDTEMP case 301: // M301 { if(code_seen('P')) PID_Kp = code_value(); if(code_seen('I')) PID_Ki = code_value(); if(code_seen('D')) PID_Kd = code_value(); updatePID(); } break; #endif //PIDTEMP #ifdef PID_AUTOTUNE case 303: // M303 PID autotune { float help_temp = 150.0; if (code_seen('S')) help_temp=code_value(); PID_autotune(help_temp); } break; #endif case 400: // M400 finish all moves { st_synchronize(); } break; #ifdef USE_EEPROM_SETTINGS case 500: // Store settings in EEPROM { EEPROM_StoreSettings(); } break; case 501: // Read settings from EEPROM { EEPROM_RetrieveSettings(false,true); for(int8_t i=0; i < NUM_AXIS; i++) { axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; } } break; case 502: // Revert to default settings { EEPROM_RetrieveSettings(true,true); for(int8_t i=0; i < NUM_AXIS; i++) { axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; } } break; case 503: // print settings currently in memory { EEPROM_printSettings(); } break; #endif #ifdef DEBUG_HEATER_TEMP case 601: // M601 show Extruder Temp jitter #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595 if(current_raw_maxval > 0) tt_maxval = analog2temp(current_raw_maxval); if(current_raw_minval < 10000) tt_minval = analog2temp(current_raw_minval); #endif showString(PSTR("Tmin:")); Serial.print(tt_minval); showString(PSTR(" / Tmax:")); Serial.print(tt_maxval); showString(PSTR(" ")); break; case 602: // M602 reset Extruder Temp jitter current_raw_minval = 32000; current_raw_maxval = -32000; showString(PSTR("T Minmax Reset ")); break; #endif case 603: // M603 Free RAM showString(PSTR("Free Ram: ")); Serial.println(FreeRam1()); break; default: #ifdef SEND_WRONG_CMD_INFO showString(PSTR("Unknown M-COM:")); Serial.println(cmdbuffer[bufindr]); #endif break; } } else{ showString(PSTR("Unknown command:\r\n")); Serial.println(cmdbuffer[bufindr]); } ClearToSend(); } void FlushSerialRequestResend() { //char cmdbuffer[bufindr][100]="Resend:"; Serial.flush(); showString(PSTR("Resend:")); Serial.println(gcode_LastN + 1); ClearToSend(); } void ClearToSend() { previous_millis_cmd = millis(); #ifdef SDSUPPORT if(fromsd[bufindr]) return; #endif showString(PSTR("ok\r\n")); //Serial.println("ok"); } FORCE_INLINE void get_coordinates() { for(int i=0; i < NUM_AXIS; i++) { if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; else destination[i] = current_position[i]; //Are these else lines really needed? } if(code_seen('F')) { next_feedrate = code_value(); if(next_feedrate > 0.0) feedrate = next_feedrate; } } #ifdef USE_ARC_FUNCTION void get_arc_coordinates() { get_coordinates(); if(code_seen('I')) { offset[0] = code_value(); } else { offset[0] = 0.0; } if(code_seen('J')) { offset[1] = code_value(); } else { offset[1] = 0.0; } } #endif void prepare_move() { long help_feedrate = 0; if(!is_homing){ if (min_software_endstops) { if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0; if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0; if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0; } if (max_software_endstops) { if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH; if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH; if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH; } } if(destination[E_AXIS] > current_position[E_AXIS]) { help_feedrate = ((long)feedrate*(long)feedmultiply); } else { help_feedrate = ((long)feedrate*(long)100); } plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0); for(int i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } } #ifdef USE_ARC_FUNCTION void prepare_arc_move(char isclockwise) { float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc long help_feedrate = 0; if(destination[E_AXIS] > current_position[E_AXIS]) { help_feedrate = ((long)feedrate*(long)feedmultiply); } else { help_feedrate = ((long)feedrate*(long)100); } // Trace the arc mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. for(int8_t i=0; i < NUM_AXIS; i++) { current_position[i] = destination[i]; } } #endif FORCE_INLINE void kill() { #if TEMP_0_PIN > -1 target_raw=0; WRITE(HEATER_0_PIN,LOW); #endif #if TEMP_1_PIN > -1 target_bed_raw=0; if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW); #endif disable_x(); disable_y(); disable_z(); disable_e(); if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); } FORCE_INLINE void manage_inactivity(byte debug) { if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); } check_axes_activity(); } #if (MINIMUM_FAN_START_SPEED > 0) void manage_fan_start_speed(void) { if(fan_org_start_speed > 0) { if((millis() - previous_millis_fan_start) > MINIMUM_FAN_START_TIME ) { #if FAN_PIN > -1 #if defined(FAN_SOFT_PWM) g_fan_pwm_val = fan_org_start_speed; #else WRITE(FAN_PIN, HIGH); analogWrite_check(FAN_PIN, fan_org_start_speed; #endif #endif fan_org_start_speed = 0; } } } #endif // Planner with Interrupt for Stepper /* Reasoning behind the mathematics in this module (in the key of 'Mathematica'): s == speed, a == acceleration, t == time, d == distance Basic definitions: Speed[s_, a_, t_] := s + (a*t) Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] Distance to reach a specific speed with a constant acceleration: Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() Speed after a given distance of travel with constant acceleration: Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] m -> Sqrt[2 a d + s^2] DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] When to start braking (di) to reach a specified destionation speed (s2) after accelerating from initial speed s1 without ever stopping at a plateau: Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) */ static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions static volatile unsigned char block_buffer_head; // Index of the next block to be pushed static volatile unsigned char block_buffer_tail; // Index of the block to process now //=========================================================================== //=============================private variables ============================ //=========================================================================== // Returns the index of the next block in the ring buffer // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. static int8_t next_block_index(int8_t block_index) { block_index++; if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; } return(block_index); } // Returns the index of the previous block in the ring buffer static int8_t prev_block_index(int8_t block_index) { if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; } block_index--; return(block_index); } // The current position of the tool in absolute steps static long position[4]; static float previous_speed[4]; // Speed of previous path line segment static float previous_nominal_speed; // Nominal speed of previous path line segment // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration: FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { if (acceleration!=0) { return((target_rate*target_rate-initial_rate*initial_rate)/ (2.0*acceleration)); } else { return 0.0; // acceleration was 0, set acceleration distance to 0 } } // This function gives you the point at which you must start braking (at the rate of -acceleration) if // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after // a total travel of distance. This can be used to compute the intersection point between acceleration and // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { if (acceleration!=0) { return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ (4.0*acceleration) ); } else { return 0.0; // acceleration was 0, set intersection distance to 0 } } // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) { unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min) unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min) // Limit minimal step rate (Otherwise the timer will overflow.) if(initial_rate <120) {initial_rate=120; } if(final_rate < 120) {final_rate=120; } long acceleration = block->acceleration_st; int32_t accelerate_steps = ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration)); int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration)); // Calculate the size of Plateau of Nominal Rate. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort acceleration and start breaking // in order to reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = ceil( intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count)); accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off accelerate_steps = min(accelerate_steps,block->step_event_count); plateau_steps = 0; } #ifdef ADVANCE volatile long initial_advance = block->advance*entry_factor*entry_factor; volatile long final_advance = block->advance*exit_factor*exit_factor; #endif // ADVANCE // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if(block->busy == false) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps+plateau_steps; block->initial_rate = initial_rate; block->final_rate = final_rate; #ifdef ADVANCE block->initial_advance = initial_advance; block->final_advance = final_advance; #endif //ADVANCE } CRITICAL_SECTION_END; } // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { return sqrt(target_velocity*target_velocity-2*acceleration*distance); } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. //inline float junction_jerk(block_t *before, block_t *after) { // return sqrt( // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); //} // The kernel called by planner_recalculate() when scanning the plan from last to first entry. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { if(!current) { return; } if (next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. if (current->entry_speed != current->max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { current->entry_speed = min( current->max_entry_speed, max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); } else { current->entry_speed = current->max_entry_speed; } current->recalculate_flag = true; } } // Skip last block. Already initialized and set for recalculation. } // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the reverse pass. void planner_reverse_pass() { uint8_t block_index = block_buffer_head; //Make a local copy of block_buffer_tail, because the interrupt can alter it CRITICAL_SECTION_START; unsigned char tail = block_buffer_tail; CRITICAL_SECTION_END; if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); block_t *block[3] = { NULL, NULL, NULL }; while(block_index != tail) { block_index = prev_block_index(block_index); block[2]= block[1]; block[1]= block[0]; block[0] = &block_buffer[block_index]; planner_reverse_pass_kernel(block[0], block[1], block[2]); } } } // The kernel called by planner_recalculate() when scanning the plan from first to last entry. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { if(!previous) { return; } // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!previous->nominal_length_flag) { if (previous->entry_speed < current->entry_speed) { double entry_speed = min( current->entry_speed, max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); // Check for junction speed change if (current->entry_speed != entry_speed) { current->entry_speed = entry_speed; current->recalculate_flag = true; } } } } // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the forward pass. void planner_forward_pass() { uint8_t block_index = block_buffer_tail; block_t *block[3] = { NULL, NULL, NULL }; while(block_index != block_buffer_head) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[block_index]; planner_forward_pass_kernel(block[0],block[1],block[2]); block_index = next_block_index(block_index); } planner_forward_pass_kernel(block[1], block[2], NULL); } // Recalculates the trapezoid speed profiles for all blocks in the plan according to the // entry_factor for each junction. Must be called by planner_recalculate() after // updating the blocks. void planner_recalculate_trapezoids() { int8_t block_index = block_buffer_tail; block_t *current; block_t *next = NULL; while(block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { // Recalculate if current block entry or exit junction speed has changed. if (current->recalculate_flag || next->recalculate_flag) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed, next->entry_speed/current->nominal_speed); current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed } } block_index = next_block_index( block_index ); } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if(next != NULL) { calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, MINIMUM_PLANNER_SPEED/next->nominal_speed); next->recalculate_flag = false; } } // Recalculates the motion plan according to the following algorithm: // // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) // so that: // a. The junction jerk is within the set limit // b. No speed reduction within one block requires faster deceleration than the one, true constant // acceleration. // 2. Go over every block in chronological order and dial down junction speed reduction values if // a. The speed increase within one block would require faster accelleration than the one, true // constant acceleration. // // When these stages are complete all blocks have an entry_factor that will allow all speed changes to // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // the set limit. Finally it will: // // 3. Recalculate trapezoids for all blocks. void planner_recalculate() { planner_reverse_pass(); planner_forward_pass(); planner_recalculate_trapezoids(); } void plan_init() { block_buffer_head = 0; block_buffer_tail = 0; memset(position, 0, sizeof(position)); // clear position previous_speed[0] = 0.0; previous_speed[1] = 0.0; previous_speed[2] = 0.0; previous_speed[3] = 0.0; previous_nominal_speed = 0.0; } FORCE_INLINE void plan_discard_current_block() { if (block_buffer_head != block_buffer_tail) { block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK; } } FORCE_INLINE block_t *plan_get_current_block() { if (block_buffer_head == block_buffer_tail) { return(NULL); } block_t *block = &block_buffer[block_buffer_tail]; block->busy = true; return(block); } // Gets the current block. Returns NULL if buffer empty FORCE_INLINE bool blocks_queued() { if (block_buffer_head == block_buffer_tail) { return false; } else return true; } void check_axes_activity() { unsigned char x_active = 0; unsigned char y_active = 0; unsigned char z_active = 0; unsigned char e_active = 0; block_t *block; if(block_buffer_tail != block_buffer_head) { uint8_t block_index = block_buffer_tail; while(block_index != block_buffer_head) { block = &block_buffer[block_index]; if(block->steps_x != 0) x_active++; if(block->steps_y != 0) y_active++; if(block->steps_z != 0) z_active++; if(block->steps_e != 0) e_active++; block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } } if((DISABLE_X) && (x_active == 0)) disable_x(); if((DISABLE_Y) && (y_active == 0)) disable_y(); if((DISABLE_Z) && (z_active == 0)) disable_z(); if((DISABLE_E) && (e_active == 0)) disable_e(); } float junction_deviation = 0.1; float max_E_feedrate_calc = MAX_RETRACT_FEEDRATE; bool retract_feedrate_aktiv = false; // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // calculation the caller must also provide the physical length of the line in millimeters. void plan_buffer_line(float x, float y, float z, float e, float feed_rate) { // Calculate the buffer head after we push this byte int next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. while(block_buffer_tail == next_buffer_head) { manage_heater(); manage_inactivity(1); #if (MINIMUM_FAN_START_SPEED > 0) manage_fan_start_speed(); #endif } // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow long target[4]; target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); // Prepare to set up new block block_t *block = &block_buffer[block_buffer_head]; // Mark block as not busy (Not executed by the stepper interrupt) block->busy = false; // Number of steps for each axis block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); block->steps_e *= extrudemultiply; block->steps_e /= 100; block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); // Bail if this is a zero-length block if (block->step_event_count <=dropsegments) { return; }; // Compute direction bits for this block block->direction_bits = 0; if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<steps_e > 0) retract_feedrate_aktiv = false; } else { max_E_feedrate_calc = max_feedrate[E_AXIS]; } } #ifdef DELAY_ENABLE if(block->steps_x != 0) { enable_x(); delayMicroseconds(DELAY_ENABLE); } if(block->steps_y != 0) { enable_y(); delayMicroseconds(DELAY_ENABLE); } if(block->steps_z != 0) { enable_z(); delayMicroseconds(DELAY_ENABLE); } if(block->steps_e != 0) { enable_e(); delayMicroseconds(DELAY_ENABLE); } #else //enable active axes if(block->steps_x != 0) enable_x(); if(block->steps_y != 0) enable_y(); if(block->steps_z != 0) enable_z(); if(block->steps_e != 0) enable_e(); #endif if (block->steps_e == 0) { if(feed_rate 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); #endif float delta_mm[4]; delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; //delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS]; delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; if ( block->steps_x <= dropsegments && block->steps_y <= dropsegments && block->steps_z <= dropsegments ) { block->millimeters = fabs(delta_mm[E_AXIS]); } else { block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); } float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. float inverse_second = feed_rate * inverse_millimeters; block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 /* // segment time im micro seconds long segment_time = lround(1000000.0/inverse_second); if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) { if (segment_time max_feedrate[i]) speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); } current_speed[E_AXIS] = delta_mm[E_AXIS] * inverse_second; if(fabs(current_speed[E_AXIS]) > max_E_feedrate_calc) speed_factor = min(speed_factor, max_E_feedrate_calc / fabs(current_speed[E_AXIS])); // Correct the speed if( speed_factor < 1.0) { for(unsigned char i=0; i < 4; i++) { current_speed[i] *= speed_factor; } block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. float steps_per_mm = block->step_event_count/block->millimeters; if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } else { block->acceleration_st = ceil(move_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 // Limit acceleration per axis if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; } block->acceleration = block->acceleration_st / steps_per_mm; block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); #if 0 // Use old jerk for now // Compute path unit vector double unit_vec[3]; unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. // Let a circle be tangent to both previous and current path line segments, where the junction // deviation is defined as the distance from the junction to the closest edge of the circle, // colinear with the circle center. The circular segment joining the two paths represents the // path of centripetal acceleration. Solve for max velocity based on max acceleration about the // radius of the circle, defined indirectly by junction deviation. This may be also viewed as // path width or max_jerk in the previous grbl version. This approach does not actually deviate // from path, but used as a robust way to compute cornering speeds, as it takes into account the // nonlinearities of both the junction angle and junction velocity. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; // Skip and use default max junction speed for 0 degree acute junction. if (cos_theta < 0.95) { vmax_junction = min(previous_nominal_speed,block->nominal_speed); // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. if (cos_theta > -0.95) { // Compute maximum junction velocity based on maximum acceleration and junction deviation double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. vmax_junction = min(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); } } } #endif // Start with a safe speed float vmax_junction = max_xy_jerk/2; float vmax_junction_factor = 1.0; if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) vmax_junction = min(vmax_junction, max_z_jerk/2); if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) vmax_junction = min(vmax_junction, max_e_jerk/2); vmax_junction = min(vmax_junction, block->nominal_speed); float safe_speed = vmax_junction; if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { vmax_junction = block->nominal_speed; // } if (jerk > max_xy_jerk) { vmax_junction_factor = (max_xy_jerk/jerk); } if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]))); } if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]))); } vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed } block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; } else { block->nominal_length_flag = false; } block->recalculate_flag = true; // Always calculate trapezoid for new block // Update previous path unit_vector and nominal speed memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] previous_nominal_speed = block->nominal_speed; #ifdef ADVANCE // Calculate advance rate if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { block->advance_rate = 0; block->advance = 0; } else { long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; block->advance = advance; if(acc_dist == 0) { block->advance_rate = 0; } else { block->advance_rate = advance / (float)acc_dist; } } #endif // ADVANCE calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, safe_speed/block->nominal_speed); // Move buffer head block_buffer_head = next_buffer_head; // Update position memcpy(position, target, sizeof(target)); // position[] = target[] planner_recalculate(); #ifdef AUTOTEMP getHighESpeed(); #endif st_wake_up(); } int calc_plannerpuffer_fill(void) { int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); return(moves_queued); } void plan_set_position(float x, float y, float z, float e) { position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); virtual_steps_x = 0; virtual_steps_y = 0; virtual_steps_z = 0; previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_speed[0] = 0.0; previous_speed[1] = 0.0; previous_speed[2] = 0.0; previous_speed[3] = 0.0; } #ifdef AUTOTEMP void getHighESpeed() { static float oldt=0; if(!autotemp_enabled) return; if((target_temp+2) < autotemp_min) //probably temperature set to zero. return; //do nothing float high=0.0; uint8_t block_index = block_buffer_tail; while(block_index != block_buffer_head) { if((block_buffer[block_index].steps_x != 0) || (block_buffer[block_index].steps_y != 0) || (block_buffer[block_index].steps_z != 0)) { float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; //se; units steps/sec; if(se>high) { high=se; } } block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } float t=autotemp_min+high*autotemp_factor; if(tautotemp_max) t=autotemp_max; if(oldt>t) { t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t; } oldt=t; autotemp_setpoint = (int)t; } #endif // Stepper // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store the byte 1 of the 48bit result #define MultiU24X24toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) // Some useful constants #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1< // // The trapezoid is the shape of the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. void st_wake_up() { // TCNT1 = 0; if(busy == false) ENABLE_STEPPER_DRIVER_INTERRUPT(); } FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; } else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1)&0x7fff; step_loops = 2; } else { step_loops = 1; } if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); step_rate -= (F_CPU/500000); // Correct for minimal speed if(step_rate >= (8*256)) // higher step rate { // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if(timer < 100) { timer = 100; }//(20kHz this should never happen) return timer; } // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { #ifdef ADVANCE advance = current_block->initial_advance; final_advance = current_block->final_advance; // Do E steps + advance steps e_steps += ((advance >>8) - old_advance); old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; OCR1A_nominal = calc_timer(current_block->nominal_rate); } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? current_block = plan_get_current_block(); if (current_block != NULL) { trapezoid_generator_reset(); counter_x = -(current_block->step_event_count >> 1); counter_y = counter_x; counter_z = counter_x; counter_e = counter_x; step_events_completed = 0; // #ifdef ADVANCE // e_steps = 0; // #endif } else { OCR1A=2000; // 1kHz. } } if (current_block != NULL) { // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt out_bits = current_block->direction_bits; // Set direction and check limit switches if ((out_bits & (1< -1 bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOP_INVERT); if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { if(!is_homing) endstop_x_hit=true; else step_events_completed = current_block->step_event_count; } else { endstop_x_hit=false; } old_x_min_endstop = x_min_endstop; #else endstop_x_hit=false; #endif } } else { // +direction WRITE(X_DIR_PIN,!INVERT_X_DIR); CHECK_ENDSTOPS { #if X_MAX_PIN > -1 bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOP_INVERT); if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ if(!is_homing) endstop_x_hit=true; else step_events_completed = current_block->step_event_count; } else { endstop_x_hit=false; } old_x_max_endstop = x_max_endstop; #else endstop_x_hit=false; #endif } } if ((out_bits & (1< -1 bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT); if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { if(!is_homing) endstop_y_hit=true; else step_events_completed = current_block->step_event_count; } else { endstop_y_hit=false; } old_y_min_endstop = y_min_endstop; #else endstop_y_hit=false; #endif } } else { // +direction WRITE(Y_DIR_PIN,!INVERT_Y_DIR); CHECK_ENDSTOPS { #if Y_MAX_PIN > -1 bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT); if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ if(!is_homing) endstop_y_hit=true; else step_events_completed = current_block->step_event_count; } else { endstop_y_hit=false; } old_y_max_endstop = y_max_endstop; #else endstop_y_hit=false; #endif } } if ((out_bits & (1< -1 bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT); if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { if(!is_homing) endstop_z_hit=true; else step_events_completed = current_block->step_event_count; } else { endstop_z_hit=false; } old_z_min_endstop = z_min_endstop; #else endstop_z_hit=false; #endif } } else { // +direction WRITE(Z_DIR_PIN,!INVERT_Z_DIR); CHECK_ENDSTOPS { #if Z_MAX_PIN > -1 bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT); if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { if(!is_homing) endstop_z_hit=true; else step_events_completed = current_block->step_event_count; } else { endstop_z_hit=false; } old_z_max_endstop = z_max_endstop; #else endstop_z_hit=false; #endif } } #ifndef ADVANCE if ((out_bits & (1<steps_e; if (counter_e > 0) { counter_e -= current_block->step_event_count; if ((out_bits & (1<steps_x; if (counter_x > 0) { if(!endstop_x_hit) { if(virtual_steps_x) virtual_steps_x--; else WRITE(X_STEP_PIN, HIGH); } else virtual_steps_x++; counter_x -= current_block->step_event_count; WRITE(X_STEP_PIN, LOW); } counter_y += current_block->steps_y; if (counter_y > 0) { if(!endstop_y_hit) { if(virtual_steps_y) virtual_steps_y--; else WRITE(Y_STEP_PIN, HIGH); } else virtual_steps_y++; counter_y -= current_block->step_event_count; WRITE(Y_STEP_PIN, LOW); } counter_z += current_block->steps_z; if (counter_z > 0) { if(!endstop_z_hit) { if(virtual_steps_z) virtual_steps_z--; else WRITE(Z_STEP_PIN, HIGH); } else virtual_steps_z++; counter_z -= current_block->step_event_count; WRITE(Z_STEP_PIN, LOW); } #ifndef ADVANCE counter_e += current_block->steps_e; if (counter_e > 0) { WRITE(E_STEP_PIN, HIGH); counter_e -= current_block->step_event_count; WRITE(E_STEP_PIN, LOW); } #endif //!ADVANCE step_events_completed += 1; if(step_events_completed >= current_block->step_event_count) break; } // Calculare new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; // upper limit if(acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval timer = calc_timer(acc_step_rate); OCR1A = timer; acceleration_time += timer; #ifdef ADVANCE for(int8_t i=0; i < step_loops; i++) { advance += advance_rate; } //if(advance > current_block->advance) advance = current_block->advance; // Do E steps + advance steps e_steps += ((advance >>8) - old_advance); old_advance = advance >>8; #endif } else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); if(step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } else { step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. } // lower limit if(step_rate < current_block->final_rate) step_rate = current_block->final_rate; // step_rate to timer interval timer = calc_timer(step_rate); OCR1A = timer; deceleration_time += timer; #ifdef ADVANCE for(int8_t i=0; i < step_loops; i++) { advance -= advance_rate; } if(advance < final_advance) advance = final_advance; // Do E steps + advance steps e_steps += ((advance >>8) - old_advance); old_advance = advance >>8; #endif //ADVANCE } else { OCR1A = OCR1A_nominal; } // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); } } } #ifdef ADVANCE unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies ISR(TIMER0_COMPA_vect) { old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) OCR0A = old_OCR0A; // Set E direction (Depends on E direction + advance) for(unsigned char i=0; i<4;i++) { if (e_steps != 0) { WRITE(E0_STEP_PIN, LOW); if (e_steps < 0) { WRITE(E0_DIR_PIN, INVERT_E0_DIR); e_steps++; WRITE(E0_STEP_PIN, HIGH); } else if (e_steps > 0) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); e_steps--; WRITE(E0_STEP_PIN, HIGH); } } } } #endif // ADVANCE void st_init() { // waveform generation = 0100 = CTC TCCR1B &= ~(1< 0) manage_fan_start_speed(); #endif } } #ifdef DEBUG void log_message(char* message) { Serial.print("DEBUG"); Serial.println(message); } void log_bool(char* message, bool value) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); } void log_int(char* message, int value) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); } void log_long(char* message, long value) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); } void log_float(char* message, float value) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); } void log_uint(char* message, unsigned int value) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); } void log_ulong(char* message, unsigned long value) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); } void log_int_array(char* message, int value[], int array_lenght) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); for(int i=0; i < array_lenght; i++){ Serial.print(value[i]); if(i != array_lenght-1) Serial.print(", "); } Serial.println("}"); } void log_long_array(char* message, long value[], int array_lenght) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); for(int i=0; i < array_lenght; i++){ Serial.print(value[i]); if(i != array_lenght-1) Serial.print(", "); } Serial.println("}"); } void log_float_array(char* message, float value[], int array_lenght) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); for(int i=0; i < array_lenght; i++){ Serial.print(value[i]); if(i != array_lenght-1) Serial.print(", "); } Serial.println("}"); } void log_uint_array(char* message, unsigned int value[], int array_lenght) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); for(int i=0; i < array_lenght; i++){ Serial.print(value[i]); if(i != array_lenght-1) Serial.print(", "); } Serial.println("}"); } void log_ulong_array(char* message, unsigned long value[], int array_lenght) { Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); for(int i=0; i < array_lenght; i++){ Serial.print(value[i]); if(i != array_lenght-1) Serial.print(", "); } Serial.println("}"); } #endif