/*
 Reprap firmware based on Sprinter
 Optimize for Sanguinololu 1.2 and above
 
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with this program.  If not, see . */
/*
  This firmware is a mashup between Sprinter,grbl and parts from marlin.
  (https://github.com/kliment/Sprinter)
  
  Changes by Doppler Michael (midopple)
  
  Planner is from Simen Svale Skogsrud
  https://github.com/simen/grbl
  Parts of Marlin Firmware from ErikZalm
  https://github.com/ErikZalm/Marlin-non-gen6
  
  Sprinter V2
- Look Vorward Funktion -
- Stepper Control with Timer 1
- SOFT PWM for Extruder heating --> Free Timer 1
- G2 / G3 Command for arc real arc
- Baudrate 250 kbaud
- M30 Command delete file on SD Card
- Text moved to flash to free RAM
- M203 Command for Temp debugging
*/
#include 
#include 
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Sprinter.h"
#include "speed_lookuptable.h"
#include "arc_func.h"
#include "heater.h"
#ifdef SDSUPPORT
#include "SdFat.h"
#endif
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START  unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END    SREG = _sreg
#endif //CRITICAL_SECTION_START
void __cxa_pure_virtual(){};
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0  -> G1
// G1  - Coordinated Movement X Y Z E
// G2  - CW ARC
// G3  - CCW ARC
// G4  - Dwell S or P
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M20  - List SD card
// M21  - Init SD card
// M22  - Release SD card
// M23  - Select SD file (M23 filename.g)
// M24  - Start/resume SD print
// M25  - Pause SD print
// M26  - Set SD position in bytes (M26 S12345)
// M27  - Report SD print status
// M28  - Start SD write (M28 filename.g)
// M29  - Stop SD write
//   -   - Delete file on sd card
// M42  - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
// M80  - Turn on Power Supply
// M81  - Turn off Power Supply
// M82  - Set E codes absolute (default)
// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
// M84  - Disable steppers until next move, 
//        or use S to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
// M85  - Set inactivity shutdown timer with parameter S. To disable set zero (default)
// M92  - Set axis_steps_per_unit - same syntax as G92
// M115	- Capabilities string
// M119 - Show Endstopper State 
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
// M203 - Set temperture monitor to Sx
// M220 - set speed factor override percentage S:factor in percent 
// Debug feature / Testing the PID for Hotend
// M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperatur while printing)
// M602 - Reset Temp jitter from Extruder (min / max val) --> Dont use it while Printing
// M603 - Show Free Ram
#define _VERSION_TEXT "1.2.20T / 27.01.2012"
//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
float axis_steps_per_unit[] = _AXIS_STEP_PER_UNIT; 
float max_feedrate[] = _MAX_FEEDRATE;
float homing_feedrate[] = _HOMING_FEEDRATE;
bool axis_relative_modes[] = _AXIS_RELATIVE_MODES;
bool move_direction[NUM_AXIS];
unsigned long axis_previous_micros[NUM_AXIS];
unsigned long previous_micros = 0;
unsigned long move_steps_to_take[NUM_AXIS];
#ifdef RAMP_ACCELERATION
  float acceleration = _ACCELERATION;         // Normal acceleration mm/s^2
  float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2
  float max_xy_jerk = _MAX_XY_JERK;
  float max_z_jerk = _MAX_Z_JERK;
  float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND;
  long  max_acceleration_units_per_sq_second[] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
  long  max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves
  unsigned long axis_max_interval[NUM_AXIS];
  unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
  unsigned long max_interval;
  unsigned long steps_per_sqr_second, plateau_steps;  
#endif
//adjustable feed faktor for online tuning printerspeed
volatile int feedmultiply=100; //100->original / 200-> Faktor 2 / 50 -> Faktor 0.5
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
boolean acceleration_enabled = false, accelerating = false;
unsigned long interval;
float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
unsigned long steps_taken[NUM_AXIS];
long axis_interval[NUM_AXIS]; // for speed delay
bool home_all_axis = true;
int feedrate = 1500, next_feedrate, saved_feedrate;
float time_for_move;
long gcode_N, gcode_LastN;
bool relative_mode = false;  //Determines Absolute or Relative Coordinates
bool relative_mode_e = false;  //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
long timediff = 0;
//experimental feedrate calc
//float d = 0;
//float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
//For arc centerpont, send bei Command G2/G3
float offset[3] = {0.0, 0.0, 0.0};
#ifdef STEP_DELAY_RATIO
  long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
#endif
// comm variables and Commandbuffer
// BUFSIZE is reduced from 8 to 5 to free more RAM for the PLANNER
#define MAX_CMD_SIZE 96
#define BUFSIZE 5 //8
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
//Send Temperature in °C to Host
int hotendtC = 0, bedtempC = 0;
       
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
//Temp Montor for repetier
unsigned char manage_monitor = 255;
//------------------------------------------------
//Init the SD card 
//------------------------------------------------
#ifdef SDSUPPORT
  Sd2Card card;
  SdVolume volume;
  SdFile root;
  SdFile file;
  uint32_t filesize = 0;
  uint32_t sdpos = 0;
  bool sdmode = false;
  bool sdactive = false;
  bool savetosd = false;
  int16_t read_char_n;
  
  void initsd()
  {
  sdactive = false;
  #if SDSS >- 1
    if(root.isOpen())
        root.close();
    if (!card.init(SPI_FULL_SPEED,SDSS)){
        //if (!card.init(SPI_HALF_SPEED,SDSS))
          showString(PSTR("SD init fail\r\n"));
    }
    else if (!volume.init(&card))
          showString(PSTR("volume.init failed\r\n"));
    else if (!root.openRoot(&volume)) 
          showString(PSTR("openRoot failed\r\n"));
    else{
          sdactive = true;
          print_disk_info();
          #ifdef SDINITFILE
            file.close();
            if(file.open(&root, "init.g", O_READ)){
                sdpos = 0;
                filesize = file.fileSize();
                sdmode = true;
            }
          #endif
    }
    
  #endif
  }
    
 void print_disk_info(void)
 {
   // print the type of card
    showString(PSTR("\nCard type: "));
    switch(card.type()) 
    {
      case SD_CARD_TYPE_SD1:
        showString(PSTR("SD1\r\n"));
        break;
      case SD_CARD_TYPE_SD2:
        showString(PSTR("SD2\r\n"));
        break;
      case SD_CARD_TYPE_SDHC:
        showString(PSTR("SDHC\r\n"));
        break;
      default:
        showString(PSTR("Unknown\r\n"));
    }
  
    //uint64_t freeSpace = volume.clusterCount()*volume.blocksPerCluster()*512;
    //uint64_t occupiedSpace = (card.cardSize()*512) - freeSpace;
    // print the type and size of the first FAT-type volume
    uint32_t volumesize;
    showString(PSTR("\nVolume type is FAT"));
    Serial.println(volume.fatType(), DEC);
    
    volumesize = volume.blocksPerCluster(); // clusters are collections of blocks
    volumesize *= volume.clusterCount(); // we'll have a lot of clusters
    volumesize *= 512; // SD card blocks are always 512 bytes
    volumesize /= 1024; //kbytes
    volumesize /= 1024; //Mbytes
    showString(PSTR("Volume size (Mbytes): "));
    Serial.println(volumesize);
   
    // list all files in the card with date and size
    //root.ls(LS_R | LS_DATE | LS_SIZE);
 }
    
    
 
  
  inline void write_command(char *buf)
  {
      char* begin = buf;
      char* npos = 0;
      char* end = buf + strlen(buf) - 1;
      
      file.writeError = false;
      
      if((npos = strchr(buf, 'N')) != NULL)
      {
          begin = strchr(npos, ' ') + 1;
          end = strchr(npos, '*') - 1;
      }
      
      end[1] = '\r';
      end[2] = '\n';
      end[3] = '\0';
      
      //Serial.println(begin);
      file.write(begin);
      
      if (file.writeError)
      {
          showString(PSTR("error writing to file\r\n"));
      }
  }
#endif
int FreeRam1(void)
{
  extern int  __bss_end;
  extern int* __brkval;
  int free_memory;
  if (reinterpret_cast(__brkval) == 0)
  {
    // if no heap use from end of bss section
    free_memory = reinterpret_cast(&free_memory) - reinterpret_cast(&__bss_end);
  }
  else
  {
    // use from top of stack to heap
    free_memory = reinterpret_cast(&free_memory) - reinterpret_cast(__brkval);
  }
  
  return free_memory;
}
//------------------------------------------------
//Print a String from Flash to Serial (save RAM)
//------------------------------------------------
void showString (PGM_P s) 
{
  char c;
  
  while ((c = pgm_read_byte(s++)) != 0)
    Serial.print(c);
}
//------------------------------------------------
// Init 
//------------------------------------------------
void setup()
{ 
  
  Serial.begin(BAUDRATE);
  showString(PSTR("SprinterV2\r\n"));
  showString(PSTR(_VERSION_TEXT));
  showString(PSTR("\r\n"));
  showString(PSTR("start\r\n"));
  for(int i = 0; i < BUFSIZE; i++)
  {
      fromsd[i] = false;
  }
  
  
  //Initialize Dir Pins
  #if X_DIR_PIN > -1
    SET_OUTPUT(X_DIR_PIN);
  #endif
  #if Y_DIR_PIN > -1 
    SET_OUTPUT(Y_DIR_PIN);
  #endif
  #if Z_DIR_PIN > -1 
    SET_OUTPUT(Z_DIR_PIN);
  #endif
  #if E_DIR_PIN > -1 
    SET_OUTPUT(E_DIR_PIN);
  #endif
  
  //Initialize Enable Pins - steppers default to disabled.
  
  #if (X_ENABLE_PIN > -1)
    SET_OUTPUT(X_ENABLE_PIN);
  if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  #endif
  #if (Y_ENABLE_PIN > -1)
    SET_OUTPUT(Y_ENABLE_PIN);
  if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  #endif
  #if (Z_ENABLE_PIN > -1)
    SET_OUTPUT(Z_ENABLE_PIN);
  if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  #endif
  #if (E_ENABLE_PIN > -1)
    SET_OUTPUT(E_ENABLE_PIN);
  if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
  #endif
  #ifdef CONTROLLERFAN_PIN
    SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  #endif
  
  //endstops and pullups
  #ifdef ENDSTOPPULLUPS
  #if X_MIN_PIN > -1
    SET_INPUT(X_MIN_PIN); 
    WRITE(X_MIN_PIN,HIGH);
  #endif
  #if X_MAX_PIN > -1
    SET_INPUT(X_MAX_PIN); 
    WRITE(X_MAX_PIN,HIGH);
  #endif
  #if Y_MIN_PIN > -1
    SET_INPUT(Y_MIN_PIN); 
    WRITE(Y_MIN_PIN,HIGH);
  #endif
  #if Y_MAX_PIN > -1
    SET_INPUT(Y_MAX_PIN); 
    WRITE(Y_MAX_PIN,HIGH);
  #endif
  #if Z_MIN_PIN > -1
    SET_INPUT(Z_MIN_PIN); 
    WRITE(Z_MIN_PIN,HIGH);
  #endif
  #if Z_MAX_PIN > -1
    SET_INPUT(Z_MAX_PIN); 
    WRITE(Z_MAX_PIN,HIGH);
  #endif
  #else
  #if X_MIN_PIN > -1
    SET_INPUT(X_MIN_PIN); 
  #endif
  #if X_MAX_PIN > -1
    SET_INPUT(X_MAX_PIN); 
  #endif
  #if Y_MIN_PIN > -1
    SET_INPUT(Y_MIN_PIN); 
  #endif
  #if Y_MAX_PIN > -1
    SET_INPUT(Y_MAX_PIN); 
  #endif
  #if Z_MIN_PIN > -1
    SET_INPUT(Z_MIN_PIN); 
  #endif
  #if Z_MAX_PIN > -1
    SET_INPUT(Z_MAX_PIN); 
  #endif
  #endif
  
  #if (HEATER_0_PIN > -1) 
    SET_OUTPUT(HEATER_0_PIN);
    WRITE(HEATER_0_PIN,LOW);
  #endif  
  #if (HEATER_1_PIN > -1) 
    SET_OUTPUT(HEATER_1_PIN);
    WRITE(HEATER_1_PIN,LOW);
  #endif  
  
  //Initialize Fan Pin
  #if (FAN_PIN > -1) 
    SET_OUTPUT(FAN_PIN);
  #endif
  
  //Initialize Alarm Pin
  #if (ALARM_PIN > -1) 
    SET_OUTPUT(ALARM_PIN);
    WRITE(ALARM_PIN,LOW);
  #endif
  //Initialize LED Pin
  #if (LED_PIN > -1) 
    SET_OUTPUT(LED_PIN);
    WRITE(LED_PIN,LOW);
  #endif 
  
//Initialize Step Pins
  #if (X_STEP_PIN > -1) 
    SET_OUTPUT(X_STEP_PIN);
  #endif  
  #if (Y_STEP_PIN > -1) 
    SET_OUTPUT(Y_STEP_PIN);
  #endif  
  #if (Z_STEP_PIN > -1) 
    SET_OUTPUT(Z_STEP_PIN);
  #endif  
  #if (E_STEP_PIN > -1) 
    SET_OUTPUT(E_STEP_PIN);
  #endif  
  #ifdef RAMP_ACCELERATION
  for(int i=0; i < NUM_AXIS; i++){
        axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
        axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
//        axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
    }
  #endif
    
#ifdef HEATER_USES_MAX6675
  SET_OUTPUT(SCK_PIN);
  WRITE(SCK_PIN,0);
  
  SET_OUTPUT(MOSI_PIN);
  WRITE(MOSI_PIN,1);
  
  SET_INPUT(MISO_PIN);
  WRITE(MISO_PIN,1);
  
  SET_OUTPUT(MAX6675_SS);
  WRITE(MAX6675_SS,1);
#endif  
 
#ifdef SDSUPPORT
  //power to SD reader
  #if SDPOWER > -1
    SET_OUTPUT(SDPOWER); 
    WRITE(SDPOWER,HIGH);
  #endif
  
  showString(PSTR("SD Start\r\n"));
  initsd();
#endif
  #ifdef PID_SOFT_PWM
  showString(PSTR("Soft PWM Init\r\n"));
  init_Timer2_softpwm();
  #endif
  
  showString(PSTR("Planner Init\r\n"));
  plan_init();  // Initialize planner;
  showString(PSTR("Stepper Timer init\r\n"));
  st_init();    // Initialize stepper
  //Free Ram
  showString(PSTR("Free Ram: "));
  Serial.println(FreeRam1());
  
  //Planner Buffer Size
  showString(PSTR("Plan Buffer Size:"));
  Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  showString(PSTR(" / "));
  Serial.println(BLOCK_BUFFER_SIZE);
}
//------------------------------------------------
//MAIN LOOP
//------------------------------------------------
void loop()
{
  if(buflen < (BUFSIZE-1))
    get_command();
  
  if(buflen)
  {
#ifdef SDSUPPORT
    if(savetosd)
    {
        if(strstr(cmdbuffer[bufindr],"M29") == NULL)
        {
            write_command(cmdbuffer[bufindr]);
            showString(PSTR("ok\r\n"));
        }
        else
        {
            file.sync();
            file.close();
            savetosd = false;
            showString(PSTR("Done saving file.\r\n"));
        }
    }
    else
    {
        process_commands();
    }
#else
    process_commands();
#endif
    buflen = (buflen-1);
    bufindr = (bufindr + 1)%BUFSIZE;
  }
  
  //check heater every n milliseconds
  manage_heater();
  manage_inactivity(1);
}
//------------------------------------------------
//READ COMMAND FROM UART
//------------------------------------------------
inline void get_command() 
{ 
  while( Serial.available() > 0  && buflen < BUFSIZE)
  {
    serial_char = Serial.read();
    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) 
    {
      if(!serial_count) return; //if empty line
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
      if(!comment_mode)
      {
        fromsd[bufindw] = false;
        if(strstr(cmdbuffer[bufindw], "N") != NULL)
        {
          strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
          gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
          if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) )
          {
            showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:"));
            Serial.println(gcode_LastN);
            //Serial.println(gcode_N);
            FlushSerialRequestResend();
            serial_count = 0;
            return;
          }
    
          if(strstr(cmdbuffer[bufindw], "*") != NULL)
          {
            byte checksum = 0;
            byte count = 0;
            while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
            strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  
            if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum)
            {
              showString(PSTR("Error: checksum mismatch, Last Line:"));
              Serial.println(gcode_LastN);
              FlushSerialRequestResend();
              serial_count = 0;
              return;
            }
            //if no errors, continue parsing
          }
          else 
          {
            showString(PSTR("Error: No Checksum with line number, Last Line:"));
            Serial.println(gcode_LastN);
            FlushSerialRequestResend();
            serial_count = 0;
            return;
          }
    
          gcode_LastN = gcode_N;
          //if no errors, continue parsing
        }
        else  // if we don't receive 'N' but still see '*'
        {
          if((strstr(cmdbuffer[bufindw], "*") != NULL))
          {
            showString(PSTR("Error: No Line Number with checksum, Last Line:"));
            Serial.println(gcode_LastN);
            serial_count = 0;
            return;
          }
        }
        
	if((strstr(cmdbuffer[bufindw], "G") != NULL))
        {
          strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
          switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL))))
          {
            case 0:
            case 1:
            case 2:  //G2
            case 3:  //G3 arc func
              #ifdef SDSUPPORT
              if(savetosd)
                break;
              #endif
              showString(PSTR("ok\r\n"));
              //Serial.println("ok"); 
            break;
            
            default:
            break;
          }
        }
        bufindw = (bufindw + 1)%BUFSIZE;
        buflen += 1;
      }
      comment_mode = false; //for new command
      serial_count = 0; //clear buffer
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
    }
  }
#ifdef SDSUPPORT
  if(!sdmode || serial_count!=0)
  {
    return;
  }
  while( filesize > sdpos  && buflen < BUFSIZE)
  {
    read_char_n = file.read();
    serial_char = (char)read_char_n;
    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || read_char_n == -1) 
    {
        sdpos = file.curPosition();
        if(sdpos >= filesize)
        {
            sdmode = false;
            showString(PSTR("Done printing file\r\n"));
        }
        if(!serial_count) return; //if empty line
        cmdbuffer[bufindw][serial_count] = 0; //terminate string
        if(!comment_mode)
        {
          fromsd[bufindw] = true;
          buflen += 1;
          bufindw = (bufindw + 1)%BUFSIZE;
        }
        comment_mode = false; //for new command
        serial_count = 0; //clear buffer
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
    }
  }
#endif
}
inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); }  //Return True if the string was found
inline bool code_seen(char code)
{
  strchr_pointer = strchr(cmdbuffer[bufindr], code);
  return (strchr_pointer != NULL);  //Return True if a character was found
}
//------------------------------------------------
// CHECK COMMAND AND CONVERT VALUES
//------------------------------------------------
inline void process_commands()
{
  unsigned long codenum; //throw away variable
  char *starpos = NULL;
  if(code_seen('G'))
  {
    switch((int)code_value())
    {
      case 0: // G0 -> G1
      case 1: // G1
        #if (defined DISABLE_CHECK_DURING_ACC) || (defined DISABLE_CHECK_DURING_MOVE) || (defined DISABLE_CHECK_DURING_TRAVEL)
          manage_heater();
        #endif
        get_coordinates(); // For X Y Z E F
        prepare_move();
        previous_millis_cmd = millis();
        //ClearToSend();
        return;
        //break;
      case 2: // G2  - CW ARC
        get_arc_coordinates();
        prepare_arc_move(true);
        previous_millis_cmd = millis();
        //break;
        return;
      case 3: // G3  - CCW ARC
        get_arc_coordinates();
        prepare_arc_move(false);
        previous_millis_cmd = millis();
        //break;
        return;  
      case 4: // G4 dwell
        codenum = 0;
        if(code_seen('P')) codenum = code_value(); // milliseconds to wait
        if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
        codenum += millis();  // keep track of when we started waiting
        while(millis()  < codenum ){
          manage_heater();
        }
        break;
      case 28: //G28 Home all Axis one at a time
        saved_feedrate = feedrate;
        saved_feedmultiply = feedmultiply;
        feedmultiply = 100;      
      
        for(int i=0; i < NUM_AXIS; i++) 
        {
          destination[i] = current_position[i];
        }
        feedrate = 0;
        home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
        if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) 
        {
          if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1))
          {
            st_synchronize();
            current_position[X_AXIS] = 0;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
            feedrate = homing_feedrate[X_AXIS];
            prepare_move();
  
            st_synchronize();        
            current_position[X_AXIS] = 0;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[X_AXIS] = -5 * X_HOME_DIR;
            prepare_move();
  
            st_synchronize();         
            destination[X_AXIS] = 10 * X_HOME_DIR;
            feedrate = homing_feedrate[X_AXIS]/2 ;
            prepare_move();
            st_synchronize();
  
            current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[X_AXIS] = current_position[X_AXIS];
            feedrate = 0;
          }
        }
        showString(PSTR("HOME X AXIS\r\n"));
        if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) 
        {
          if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1))
          {
            current_position[Y_AXIS] = 0;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
            feedrate = homing_feedrate[Y_AXIS];
            prepare_move();
            st_synchronize();
  
            current_position[Y_AXIS] = 0;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[Y_AXIS] = -5 * Y_HOME_DIR;
            prepare_move();
            st_synchronize();
  
            destination[Y_AXIS] = 10 * Y_HOME_DIR;
            feedrate = homing_feedrate[Y_AXIS]/2;
            prepare_move();
            st_synchronize();
  
            current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[Y_AXIS] = current_position[Y_AXIS];
            feedrate = 0;
          }
        }
        showString(PSTR("HOME Y AXIS\r\n"));
        if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) 
        {
          if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1))
          {
            current_position[Z_AXIS] = 0;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
            feedrate = homing_feedrate[Z_AXIS];
            prepare_move();
            st_synchronize();
  
            current_position[Z_AXIS] = 0;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[Z_AXIS] = -2 * Z_HOME_DIR;
            prepare_move();
            st_synchronize();
  
            destination[Z_AXIS] = 3 * Z_HOME_DIR;
            feedrate = homing_feedrate[Z_AXIS]/2;
            prepare_move();
            st_synchronize();
  
            current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
            plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
            destination[Z_AXIS] = current_position[Z_AXIS];
            feedrate = 0;         
          }
        }    
   
        showString(PSTR("HOME Z AXIS\r\n"));   
      
        feedrate = saved_feedrate;
        feedmultiply = saved_feedmultiply;
      
        previous_millis_cmd = millis();
        break;
      case 90: // G90
        relative_mode = false;
        break;
      case 91: // G91
        relative_mode = true;
        break;
      case 92: // G92
        if(!code_seen(axis_codes[E_AXIS])) 
          st_synchronize();
          
        for(int i=0; i < NUM_AXIS; i++)
        {
          if(code_seen(axis_codes[i])) current_position[i] = code_value();  
        }
        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        break;
      default:
            #ifdef SEND_WRONG_CMD_INFO
              showString(PSTR("Unknown G-COM:"));
              Serial.println(cmdbuffer[bufindr]);
            #endif
      break;
    }
  }
  else if(code_seen('M'))
  {
    
    switch( (int)code_value() ) 
    {
#ifdef SDSUPPORT
        
      case 20: // M20 - list SD card
        showString(PSTR("Begin file list\r\n"));
        root.ls();
        showString(PSTR("End file list\r\n"));
        break;
      case 21: // M21 - init SD card
        sdmode = false;
        initsd();
        break;
      case 22: //M22 - release SD card
        sdmode = false;
        sdactive = false;
        break;
      case 23: //M23 - Select file
        if(sdactive)
        {
            sdmode = false;
            file.close();
            starpos = (strchr(strchr_pointer + 4,'*'));
            
            if(starpos!=NULL)
                *(starpos-1)='\0';
            
            if (file.open(&root, strchr_pointer + 4, O_READ)) 
            {
                showString(PSTR("File opened:"));
                Serial.print(strchr_pointer + 4);
                showString(PSTR(" Size:"));
                Serial.println(file.fileSize());
                sdpos = 0;
                filesize = file.fileSize();
                showString(PSTR("File selected\r\n"));
            }
            else
            {
                showString(PSTR("file.open failed\r\n"));
            }
        }
        break;
      case 24: //M24 - Start SD print
        if(sdactive)
        {
            sdmode = true;
        }
        break;
      case 25: //M25 - Pause SD print
        if(sdmode)
        {
            sdmode = false;
        }
        break;
      case 26: //M26 - Set SD index
        if(sdactive && code_seen('S'))
        {
            sdpos = code_value_long();
            file.seekSet(sdpos);
        }
        break;
      case 27: //M27 - Get SD status
        if(sdactive)
        {
            showString(PSTR("SD printing byte "));
            Serial.print(sdpos);
            showString(PSTR("/"));
            Serial.println(filesize);
        }
        else
        {
            showString(PSTR("Not SD printing\r\n"));
        }
        break;
      case 28: //M28 - Start SD write
        if(sdactive)
        {
          char* npos = 0;
            file.close();
            sdmode = false;
            starpos = (strchr(strchr_pointer + 4,'*'));
            if(starpos != NULL)
            {
              npos = strchr(cmdbuffer[bufindr], 'N');
              strchr_pointer = strchr(npos,' ') + 1;
              *(starpos-1) = '\0';
            }
            
            if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
            {
              showString(PSTR("open failed, File: "));
              Serial.print(strchr_pointer + 4);
              showString(PSTR("."));
            }
            else
            {
              savetosd = true;
              showString(PSTR("Writing to file: "));
              Serial.println(strchr_pointer + 4);
            }
        }
        break;
      case 29: //M29 - Stop SD write
        //processed in write to file routine above
        //savetosd = false;
        break;
      case 30: // M30 filename - Delete file
        if(sdactive)
        {
            sdmode = false;
            file.close();
            
            starpos = (strchr(strchr_pointer + 4,'*'));
            
            if(starpos!=NULL)
                *(starpos-1)='\0';
            
            if(file.remove(&root, strchr_pointer + 4))
            {
              showString(PSTR("File deleted\r\n"));
            }
            else
            {
              showString(PSTR("Deletion failed\r\n"));
            }
        }
        break;  
        
#endif
      case 42: //M42 -Change pin status via gcode
        if (code_seen('S'))
        {
          int pin_status = code_value();
          if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
          {
            int pin_number = code_value();
            for(int i = 0; i < sizeof(sensitive_pins); i++)
            {
              if (sensitive_pins[i] == pin_number)
              {
                pin_number = -1;
                break;
              }
            }
            
            if (pin_number > -1)
            {              
              pinMode(pin_number, OUTPUT);
              digitalWrite(pin_number, pin_status);
              //analogWrite(pin_number, pin_status);
            }
          }
        }
        break;
      case 104: // M104
        if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
        #ifdef WATCHPERIOD
            if(target_raw > current_raw)
            {
                watchmillis = max(1,millis());
                watch_raw = current_raw;
            }
            else
            {
                watchmillis = 0;
            }
        #endif
        break;
      case 140: // M140 set bed temp
        #if TEMP_1_PIN > -1 || defined BED_USES_AD595
            if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
        #endif
        break;
      case 105: // M105
        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
          hotendtC = analog2temp(current_raw);
        #endif
        #if TEMP_1_PIN > -1 || defined BED_USES_AD595
          bedtempC = analog2tempBed(current_bed_raw);
        #endif
        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595
            showString(PSTR("ok T:"));
            Serial.print(hotendtC); 
          #ifdef PIDTEMP
            showString(PSTR(" @:"));
            Serial.print(heater_duty); 
            showString(PSTR(",P:"));
            Serial.print(pTerm);
            showString(PSTR(",I:"));
            Serial.print(iTerm);
            showString(PSTR(",D:"));
            Serial.print(dTerm);
            #ifdef AUTOTEMP
              showString(PSTR(",AU:"));
              Serial.print(autotemp_setpoint);
            #endif
          #endif
          #if TEMP_1_PIN > -1 || defined BED_USES_AD595
            showString(PSTR(" B:"));
            Serial.println(bedtempC); 
          #else
            Serial.println();
          #endif
        #else
          #error No temperature source available
        #endif
        return;
        //break;
      case 109: { // M109 - Wait for extruder heater to reach target.
        if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
        #ifdef WATCHPERIOD
            if(target_raw>current_raw)
            {
                watchmillis = max(1,millis());
                watch_raw = current_raw;
            }
            else
            {
                watchmillis = 0;
            }
        #endif
        codenum = millis(); 
        
        /* See if we are heating up or cooling down */
        bool target_direction = (current_raw < target_raw);  // true if heating, false if cooling
        
      #ifdef TEMP_RESIDENCY_TIME
        long residencyStart;
        residencyStart = -1;
        /* continue to loop until we have reached the target temp   
           _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
        while( (target_direction ? (current_raw < target_raw) : (current_raw > target_raw))
            || (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
      #else
        while ( target_direction ? (current_raw < target_raw) : (current_raw > target_raw) ) {
      #endif
          if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down
          {
            showString(PSTR("T:"));
            Serial.println( analog2temp(current_raw) );
            codenum = millis();
          }
          manage_heater();
          #ifdef TEMP_RESIDENCY_TIME
            /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
               or when current temp falls outside the hysteresis after target temp was reached */
            if (   (residencyStart == -1 &&  target_direction && current_raw >= target_raw)
                || (residencyStart == -1 && !target_direction && current_raw <= target_raw)
                || (residencyStart > -1 && labs(analog2temp(current_raw) - analog2temp(target_raw)) > TEMP_HYSTERESIS) ) {
              residencyStart = millis();
            }
          #endif
	    }
      }
      break;
      case 190: // M190 - Wait bed for heater to reach target.
      #if TEMP_1_PIN > -1
        if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
        codenum = millis(); 
        while(current_bed_raw < target_bed_raw) 
        {
          if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
          {
            hotendtC=analog2temp(current_raw);
            showString(PSTR("T:"));
            Serial.print( hotendtC );
            showString(PSTR(" B:"));
            Serial.println( analog2tempBed(current_bed_raw) ); 
            codenum = millis(); 
          }
          manage_heater();
        }
      #endif
      break;
      #if FAN_PIN > -1
      case 106: //M106 Fan On
        if (code_seen('S'))
        {
            WRITE(FAN_PIN, HIGH);
            //analogWrite(FAN_PIN, constrain(code_value(),0,255) );
        }
        else 
        {
            WRITE(FAN_PIN, HIGH);
            //analogWrite(FAN_PIN, 255 );
        }
        break;
      case 107: //M107 Fan Off
          //analogWrite(FAN_PIN, 0);
          WRITE(FAN_PIN, LOW);
        break;
      #endif
      #if (PS_ON_PIN > -1)
      case 80: // M81 - ATX Power On
        SET_OUTPUT(PS_ON_PIN); //GND
        break;
      case 81: // M81 - ATX Power Off
        SET_INPUT(PS_ON_PIN); //Floating
        break;
      #endif
      case 82:
        axis_relative_modes[3] = false;
        break;
      case 83:
        axis_relative_modes[3] = true;
        break;
      case 84:
        st_synchronize(); // wait for all movements to finish
        if(code_seen('S'))
        {
          stepper_inactive_time = code_value() * 1000; 
        }
        else
        { 
          disable_x(); 
          disable_y(); 
          disable_z(); 
          disable_e(); 
        }
        break;
      case 85: // M85
        code_seen('S');
        max_inactive_time = code_value() * 1000; 
        break;
      case 92: // M92
        for(int i=0; i < NUM_AXIS; i++) 
        {
          if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
        }
        
        //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
        // should also be used in setup() as well
        #ifdef RAMP_ACCELERATION
          long temp_max_intervals[NUM_AXIS];
          for(int i=0; i < NUM_AXIS; i++) 
          {
            axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
            // all steps_per_unit related variables
          }
        #endif
        break;
      case 115: // M115
        showString(PSTR("FIRMWARE_NAME: SprinterV2 PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n"));
        //Serial.println(uuid);
        showString(PSTR(_DEF_CHAR_UUID));
        showString(PSTR("\r\n"));
        break;
      case 114: // M114
	showString(PSTR("X:"));
        Serial.print(current_position[0]);
	showString(PSTR("Y:"));
        Serial.print(current_position[1]);
	showString(PSTR("Z:"));
        Serial.print(current_position[2]);
	showString(PSTR("E:"));
        Serial.println(current_position[3]);
        break;
      case 119: // M119
      
      	#if (X_MIN_PIN > -1)
          showString(PSTR("x_min:"));
          Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
      	#endif
      	#if (X_MAX_PIN > -1)
          showString(PSTR("x_max:"));
          Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
      	#endif
      	#if (Y_MIN_PIN > -1)
      	  showString(PSTR("y_min:"));
          Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
      	#endif
      	#if (Y_MAX_PIN > -1)
      	  showString(PSTR("y_max:"));
          Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
      	#endif
      	#if (Z_MIN_PIN > -1)
      	  showString(PSTR("z_min:"));
          Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
      	#endif
      	#if (Z_MAX_PIN > -1)
      	  showString(PSTR("z_max:"));
          Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
      	#endif
      
        showString(PSTR("\r\n"));
      	break;
      #ifdef RAMP_ACCELERATION
      //TODO: update for all axis, use for loop
      case 201: // M201
        for(int i=0; i < NUM_AXIS; i++) 
        {
          if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
        }
        break;
      case 202: // M202
        for(int i=0; i < NUM_AXIS; i++) 
        {
          if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
        }
        break;
      #endif
      case 203: // M203 Temperature monitor
        if(code_seen('S')) manage_monitor = code_value();
        if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed
        break;
      case 220: // M220 S- set speed factor override percentage
      {
        if(code_seen('S')) 
        {
          feedmultiply = code_value() ;
          if(feedmultiply < 20) feedmultiply = 20;
          if(feedmultiply > 200) feedmultiply = 200;
          feedmultiplychanged=true;
        }
      }
      break;
#ifdef DEBUG_HEATER_TEMP
      case 601: // M601  show Extruder Temp jitter
        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
          if(current_raw_maxval > 0)
            tt_maxval = analog2temp(current_raw_maxval);
          if(current_raw_minval < 10000)  
            tt_minval = analog2temp(current_raw_minval);
        #endif
        
            showString(PSTR("Tmin:"));
            Serial.print(tt_minval); 
            showString(PSTR(" / Tmax:"));
            Serial.print(tt_maxval); 
            showString(PSTR(" "));
      break;
      case 602: // M602  reset Extruder Temp jitter
            current_raw_minval = 32000;
            current_raw_maxval = -32000;
        
            showString(PSTR("T Minmax Reset "));
      break;
#endif
      case 603: // M603  Free RAM
            showString(PSTR("Free Ram: "));
            Serial.println(FreeRam1()); 
      break;
      default:
            #ifdef SEND_WRONG_CMD_INFO
              showString(PSTR("Unknown M-COM:"));
              Serial.println(cmdbuffer[bufindr]);
            #endif
      break;
    }
    
  }
  else{
      showString(PSTR("Unknown command:\r\n"));
      Serial.println(cmdbuffer[bufindr]);
  }
  
  ClearToSend();
      
}
void FlushSerialRequestResend()
{
  //char cmdbuffer[bufindr][100]="Resend:";
  Serial.flush();
  showString(PSTR("Resend:"));
  Serial.println(gcode_LastN + 1);
  ClearToSend();
}
void ClearToSend()
{
  previous_millis_cmd = millis();
  #ifdef SDSUPPORT
  if(fromsd[bufindr])
    return;
  #endif
  showString(PSTR("ok\r\n"));
  //Serial.println("ok");
}
inline void get_coordinates()
{
  for(int i=0; i < NUM_AXIS; i++)
  {
    if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
    else destination[i] = current_position[i];                                                       //Are these else lines really needed?
  }
  
  if(code_seen('F'))
  {
    next_feedrate = code_value();
    if(next_feedrate > 0.0) feedrate = next_feedrate;
  }
}
inline void get_arc_coordinates()
{
   get_coordinates();
   if(code_seen('I')) offset[0] = code_value();
   if(code_seen('J')) offset[1] = code_value();
}
void prepare_move()
{
  long help_feedrate = 0;
  if (min_software_endstops) 
  {
    if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
    if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
    if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
  }
  if (max_software_endstops) 
  {
    if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
    if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
    if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
  }
  help_feedrate = ((long)feedrate*(long)feedmultiply);
  plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0);
  
  for(int i=0; i < NUM_AXIS; i++)
  {
    current_position[i] = destination[i];
  } 
}
void prepare_arc_move(char isclockwise) 
{
  float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  long help_feedrate = 0;
  
  help_feedrate = ((long)feedrate*(long)feedmultiply);
  // Trace the arc
  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise);
  
  // As far as the parser is concerned, the position is now == target. In reality the
  // motion control system might still be processing the action and the real tool position
  // in any intermediate location.
  for(int8_t i=0; i < NUM_AXIS; i++) 
  {
    current_position[i] = destination[i];
  }
}
inline void kill()
{
  #if TEMP_0_PIN > -1
    target_raw=0;
    WRITE(HEATER_0_PIN,LOW);
  #endif
  
  #if TEMP_1_PIN > -1
    target_bed_raw=0;
    if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
  #endif
  disable_x();
  disable_y();
  disable_z();
  disable_e();
  
  if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  
}
inline void manage_inactivity(byte debug) 
{ 
  if( (millis()-previous_millis_cmd) >  max_inactive_time ) if(max_inactive_time) kill(); 
  
  if( (millis()-previous_millis_cmd) >  stepper_inactive_time ) if(stepper_inactive_time) 
  { 
    disable_x(); 
    disable_y(); 
    disable_z(); 
    disable_e(); 
  }
  check_axes_activity();
}
// Planner with Interrupt for Stepper
/*  
 Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 
 s == speed, a == acceleration, t == time, d == distance
 
 Basic definitions:
 
 Speed[s_, a_, t_] := s + (a*t) 
 Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 
 Distance to reach a specific speed with a constant acceleration:
 
 Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 
 Speed after a given distance of travel with constant acceleration:
 
 Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 m -> Sqrt[2 a d + s^2]    
 
 DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 
 When to start braking (di) to reach a specified destionation speed (s2) after accelerating
 from initial speed s1 without ever stopping at a plateau:
 
 Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 
 IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 */
static block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instructions
static volatile unsigned char block_buffer_head;           // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail;           // Index of the block to process now
// The current position of the tool in absolute steps
static long position[4];   
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the 
// given acceleration:
inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration)
{
  return(
  (target_rate*target_rate-initial_rate*initial_rate)/
    (2L*acceleration)
    );
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if 
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance)
{
  return(
  (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
    (4*acceleration)
    );
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
{
  if(block->busy == true) return; // If block is busy then bail out.
  float entry_factor = entry_speed / block->nominal_speed;
  float exit_factor = exit_speed / block->nominal_speed;
  long initial_rate = ceil(block->nominal_rate*entry_factor);
  long final_rate = ceil(block->nominal_rate*exit_factor);
#ifdef ADVANCE
  long initial_advance = block->advance*entry_factor*entry_factor;
  long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
  // Limit minimal step rate (Otherwise the timer will overflow.)
  if(initial_rate <120) initial_rate=120;
  if(final_rate < 120) final_rate=120;
  
  // Calculate the acceleration steps
  long acceleration = block->acceleration_st;
  long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
  long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
  // Calculate the size of Plateau of Nominal Rate. 
  long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  // have to use intersection_distance() to calculate when to abort acceleration and start braking 
  // in order to reach the final_rate exactly at the end of this block.
  if (plateau_steps < 0) {  
    accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
    plateau_steps = 0;
  }  
  long decelerate_after = accelerate_steps+plateau_steps;
  long acceleration_rate = (long)((float)acceleration * 8.388608);
  CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
  if(block->busy == false) { // Don't update variables if block is busy.
    block->accelerate_until = accelerate_steps;
    block->decelerate_after = decelerate_after;
    block->acceleration_rate = acceleration_rate;
    block->initial_rate = initial_rate;
    block->final_rate = final_rate;
#ifdef ADVANCE
    block->initial_advance = initial_advance;
    block->final_advance = final_advance;
#endif ADVANCE
  }
  CRITICAL_SECTION_END;
}                    
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the 
// acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  return(
  sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
    );
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal 
// velocities of the respective blocks.
inline float junction_jerk(block_t *before, block_t *after) {
  return(sqrt(
    pow((before->speed_x-after->speed_x), 2)+
    pow((before->speed_y-after->speed_y), 2)));
}
// Return the safe speed which is max_jerk/2, e.g. the 
// speed under which you cannot exceed max_jerk no matter what you do.
float safe_speed(block_t *block) {
  float safe_speed;
  safe_speed = max_xy_jerk/2;  
  if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
  if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
  return safe_speed;  
}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  if(!current) { 
    return; 
  }
  float entry_speed = current->nominal_speed;
  float exit_factor;
  float exit_speed;
  if (next) {
    exit_speed = next->entry_speed;
  } 
  else {
    exit_speed = safe_speed(current);
  }
  // Calculate the entry_factor for the current block. 
  if (previous) {
    // Reduce speed so that junction_jerk is within the maximum allowed
    float jerk = junction_jerk(previous, current);
    if((previous->steps_x == 0) && (previous->steps_y == 0)) {
      entry_speed = safe_speed(current);
    }
    else if (jerk > max_xy_jerk) {
      entry_speed = (max_xy_jerk/jerk) * entry_speed;
    } 
    if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
      entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
    }
    // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
    if (entry_speed > exit_speed) {
      float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
      if (max_entry_speed < entry_speed) {
        entry_speed = max_entry_speed;
      }
    }    
  } 
  else {
    entry_speed = safe_speed(current);
  }
  // Store result
  current->entry_speed = entry_speed;
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
// implements the reverse pass.
void planner_reverse_pass() {
  char block_index = block_buffer_head;
  block_t *block[3] = { NULL, NULL, NULL };
  while(block_index != block_buffer_tail) {    
    block_index--;
    if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1;
    block[2]= block[1];
    block[1]= block[0];
    block[0] = &block_buffer[block_index];
    planner_reverse_pass_kernel(block[0], block[1], block[2]);
  }
  planner_reverse_pass_kernel(NULL, block[0], block[1]);
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  if(!current) { 
    return; 
  }
  if(previous) {
    // If the previous block is an acceleration block, but it is not long enough to 
    // complete the full speed change within the block, we need to adjust out entry
    // speed accordingly. Remember current->entry_factor equals the exit factor of 
    // the previous block.
    if(previous->entry_speed < current->entry_speed) {
      float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
      if (max_entry_speed < current->entry_speed) {
        current->entry_speed = max_entry_speed;
      }
    }
  }
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
// implements the forward pass.
void planner_forward_pass() {
  char block_index = block_buffer_tail;
  block_t *block[3] = {
    NULL, NULL, NULL  };
  while(block_index != block_buffer_head) {
    block[0] = block[1];
    block[1] = block[2];
    block[2] = &block_buffer[block_index];
    planner_forward_pass_kernel(block[0],block[1],block[2]);
    block_index = (block_index+1) & BLOCK_BUFFER_MASK;
  }
  planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the 
// entry_factor for each junction. Must be called by planner_recalculate() after 
// updating the blocks.
void planner_recalculate_trapezoids() {
  char block_index = block_buffer_tail;
  block_t *current;
  block_t *next = NULL;
  while(block_index != block_buffer_head) {
    current = next;
    next = &block_buffer[block_index];
    if (current) {
      calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);      
    }
    block_index = (block_index+1) & BLOCK_BUFFER_MASK;
  }
  calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
}
// Recalculates the motion plan according to the following algorithm:
//
//   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) 
//      so that:
//     a. The junction jerk is within the set limit
//     b. No speed reduction within one block requires faster deceleration than the one, true constant 
//        acceleration.
//   2. Go over every block in chronological order and dial down junction speed reduction values if 
//     a. The speed increase within one block would require faster accelleration than the one, true 
//        constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to 
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than 
// the set limit. Finally it will:
//
//   3. Recalculate trapezoids for all blocks.
void planner_recalculate() {   
  planner_reverse_pass();
  planner_forward_pass();
  planner_recalculate_trapezoids();
}
void plan_init() {
  block_buffer_head = 0;
  block_buffer_tail = 0;
  memset(position, 0, sizeof(position)); // clear position
}
inline void plan_discard_current_block() {
  if (block_buffer_head != block_buffer_tail) {
    block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;  
  }
}
inline block_t *plan_get_current_block() {
  if (block_buffer_head == block_buffer_tail) { 
    return(NULL); 
  }
  block_t *block = &block_buffer[block_buffer_tail];
  block->busy = true;
  return(block);
}
void check_axes_activity() {
  unsigned char x_active = 0;
  unsigned char y_active = 0;  
  unsigned char z_active = 0;
  unsigned char e_active = 0;
  block_t *block;
  if(block_buffer_tail != block_buffer_head) {
    char block_index = block_buffer_tail;
    while(block_index != block_buffer_head) {
      block = &block_buffer[block_index];
      if(block->steps_x != 0) x_active++;
      if(block->steps_y != 0) y_active++;
      if(block->steps_z != 0) z_active++;
      if(block->steps_e != 0) e_active++;
      block_index = (block_index+1) & BLOCK_BUFFER_MASK;
    }
  }
  if((DISABLE_X) && (x_active == 0)) disable_x();
  if((DISABLE_Y) && (y_active == 0)) disable_y();
  if((DISABLE_Z) && (z_active == 0)) disable_z();
  if((DISABLE_E) && (e_active == 0)) disable_e();
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in 
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
  // The target position of the tool in absolute steps
  // Calculate target position in absolute steps
  long target[4];
  target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
  target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);     
  
  // Calculate the buffer head after we push this byte
  int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;	
  // If the buffer is full: good! That means we are well ahead of the robot. 
  // Rest here until there is room in the buffer.
  while(block_buffer_tail == next_buffer_head) { 
    manage_heater(); 
    manage_inactivity(1); 
  }
  
  //showString(PSTR("X:"));
  //Serial.print(x);
  //showString(PSTR(" Y:"));
  //Serial.println(y);
  // Prepare to set up new block
  block_t *block = &block_buffer[block_buffer_head];
  
  // Mark block as not busy (Not executed by the stepper interrupt)
  block->busy = false;
  // Number of steps for each axis
  block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  // Bail if this is a zero-length block
  if (block->step_event_count == 0) { 
    return; 
  };
  
  //enable active axes
  if(block->steps_x != 0) enable_x();
  if(block->steps_y != 0) enable_y();
  if(block->steps_z != 0) enable_z();
  if(block->steps_e != 0) enable_e();
  float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
  unsigned long microseconds;
  microseconds = lround((block->millimeters/feed_rate)*1000000);
  
  // Calculate speed in mm/minute for each axis
  float multiplier = 60.0*1000000.0/microseconds;
  block->speed_z = delta_z_mm * multiplier; 
  block->speed_x = delta_x_mm * multiplier;
  block->speed_y = delta_y_mm * multiplier;
  block->speed_e = delta_e_mm * multiplier; 
  // Limit speed per axis
  float speed_factor = 1;
  float tmp_speed_factor;
  if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
    speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
  }
  if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
    tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
    if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
  }
  if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
    tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
    if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
  }
  if(abs(block->speed_e) > max_feedrate[E_AXIS]){
    tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
    if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
  }
  multiplier = multiplier * speed_factor;
  block->speed_z = delta_z_mm * multiplier; 
  block->speed_x = delta_x_mm * multiplier;
  block->speed_y = delta_y_mm * multiplier;
  block->speed_e = delta_e_mm * multiplier; 
  block->nominal_speed = block->millimeters * multiplier;
  block->nominal_rate = ceil(block->step_event_count * multiplier / 60);  
  
  if(block->nominal_rate < 120) block->nominal_rate = 120;
  block->entry_speed = safe_speed(block);
  // Compute the acceleration rate for the trapezoid generator. 
  float travel_per_step = block->millimeters/block->step_event_count;
  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
    block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
  }
  else {
    block->acceleration_st = ceil( (acceleration)/travel_per_step);      // convert to: acceleration steps/sec^2
    // Limit acceleration per axis
    if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
    if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
    if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
    if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  }
  block->acceleration = block->acceleration_st * travel_per_step;
  
#ifdef ADVANCE
  // Calculate advance rate
  if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
    block->advance_rate = 0;
    block->advance = 0;
  }
  else {
    long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
    float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * 
      (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
    block->advance = advance;
    if(acc_dist == 0) {
      block->advance_rate = 0;
    } 
    else {
      block->advance_rate = advance / (float)acc_dist;
    }
  }
#endif // ADVANCE
  // compute a preliminary conservative acceleration trapezoid
  float safespeed = safe_speed(block);
  calculate_trapezoid_for_block(block, safespeed, safespeed); 
  // Compute direction bits for this block
  block->direction_bits = 0;
  if (target[X_AXIS] < position[X_AXIS]) { 
    block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<high)
    {
      high=se;
    }
    block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  }
   
  float t=autotemp_min+high*autotemp_factor;
  
  if(tautotemp_max)
    t=autotemp_max;
  
  if(oldt>t)
  {
    t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  }
  oldt=t;
  autotemp_setpoint = (int)t;
}
#endif
// Stepper
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<
// 
//  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates 
//  first block->accelerate_until step_events_completed, then keeps going at constant speed until 
//  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
//  The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() 
{
  //  TCNT1 = 0;
  ENABLE_STEPPER_DRIVER_INTERRUPT();  
}
inline unsigned short calc_timer(unsigned short step_rate) 
{
  unsigned short timer;
  if(step_rate < 32) step_rate = 32;
  step_rate -= 32; // Correct for minimal speed
  
  if(step_rate >= (8*256))
  { // higher step rate 
    unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
    unsigned char tmp_step_rate = (step_rate & 0x00ff);
    unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
    MultiU16X8toH16(timer, tmp_step_rate, gain);
    timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  }
  else 
  { // lower step rates
    unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
    table_address += ((step_rate)>>1) & 0xfffc;
    timer = (unsigned short)pgm_read_word_near(table_address);
    timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  }
  
  if(timer < 100) timer = 100;
  
  return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new 
// block begins.
inline void trapezoid_generator_reset()
{
  accelerate_until = current_block->accelerate_until;
  decelerate_after = current_block->decelerate_after;
  acceleration_rate = current_block->acceleration_rate;
  initial_rate = current_block->initial_rate;
  final_rate = current_block->final_rate;
  nominal_rate = current_block->nominal_rate;
  #ifdef ADVANCE
    advance = current_block->initial_advance;
    final_advance = current_block->final_advance;
    advance_rate = current_block->advance_rate;
  #endif
  deceleration_time = 0;
  
  
  // step_rate to timer interval
  acc_step_rate = initial_rate;
  acceleration_time = calc_timer(acc_step_rate);
  OCR1A = acceleration_time;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.  
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. 
ISR(TIMER1_COMPA_vect)
{        
  if(busy){ /*Serial.println("BUSY")*/; 
    return; 
  } // The busy-flag is used to avoid reentering this interrupt
  busy = true;
  sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
  // If there is no current block, attempt to pop one from the buffer
  if (current_block == NULL) {
    // Anything in the buffer?
    current_block = plan_get_current_block();
    if (current_block != NULL) {
      trapezoid_generator_reset();
      counter_x = -(current_block->step_event_count >> 1);
      counter_y = counter_x;
      counter_z = counter_x;
      counter_e = counter_x;
      step_events_completed = 0;
      e_steps = 0;
    } 
    else {
      DISABLE_STEPPER_DRIVER_INTERRUPT();
    }    
  } 
  if (current_block != NULL) {
    // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
    out_bits = current_block->direction_bits;
#ifdef ADVANCE
    // Calculate E early.
    counter_e += current_block->steps_e;
    if (counter_e > 0) {
      counter_e -= current_block->step_event_count;
      if ((out_bits & (1<> 16) - old_advance);
    CRITICAL_SECTION_END;
    old_advance = advance >> 16;  
#endif //ADVANCE
    // Set direction en check limit switches
    if ((out_bits & (1<step_event_count;
      }
    }
    else // +direction
    WRITE(X_DIR_PIN,!INVERT_X_DIR);
    if ((out_bits & (1<step_event_count;
      }
    }
    else // +direction
    WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
    if ((out_bits & (1<step_event_count;
      }
    }
    else // +direction
    WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifndef ADVANCE
    if ((out_bits & (1<steps_x;
    if (counter_x > 0) {
      WRITE(X_STEP_PIN, HIGH);
      counter_x -= current_block->step_event_count;
      WRITE(X_STEP_PIN, LOW);
    }
    counter_y += current_block->steps_y;
    if (counter_y > 0) {
      WRITE(Y_STEP_PIN, HIGH);
      counter_y -= current_block->step_event_count;
      WRITE(Y_STEP_PIN, LOW);
    }
    counter_z += current_block->steps_z;
    if (counter_z > 0) {
      WRITE(Z_STEP_PIN, HIGH);
      counter_z -= current_block->step_event_count;
      WRITE(Z_STEP_PIN, LOW);
    }
#ifndef ADVANCE
    counter_e += current_block->steps_e;
    if (counter_e > 0) {
      WRITE(E_STEP_PIN, HIGH);
      counter_e -= current_block->step_event_count;
      WRITE(E_STEP_PIN, LOW);
    }
#endif //!ADVANCE
    // Calculare new timer value
    unsigned short timer;
    unsigned short step_rate;
    if (step_events_completed < accelerate_until) {
      MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
      acc_step_rate += initial_rate;
      
      // upper limit
      if(acc_step_rate > nominal_rate)
        acc_step_rate = nominal_rate;
      // step_rate to timer interval
      timer = calc_timer(acc_step_rate);
      advance += advance_rate;
      acceleration_time += timer;
      OCR1A = timer;
    } 
    else if (step_events_completed >= decelerate_after) {   
      MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
      
      if(step_rate > acc_step_rate) { // Check step_rate stays positive
        step_rate = final_rate;
      }
      else {
        step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
      }
      // lower limit
      if(step_rate < final_rate)
        step_rate = final_rate;
      // step_rate to timer interval
      timer = calc_timer(step_rate);
#ifdef ADVANCE
      advance -= advance_rate;
      if(advance < final_advance)
        advance = final_advance;
#endif //ADVANCE
      deceleration_time += timer;
      OCR1A = timer;
    }       
    // If current block is finished, reset pointer 
    step_events_completed += 1;  
    if (step_events_completed >= current_block->step_event_count) {
      current_block = NULL;
      plan_discard_current_block();
    }   
  } 
  busy=false;
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
  // Critical section needed because Timer 1 interrupt has higher priority. 
  // The pin set functions are placed on trategic position to comply with the stepper driver timing.
  WRITE(E_STEP_PIN, LOW);
  // Set E direction (Depends on E direction + advance)
  if (e_steps < 0) {
    WRITE(E_DIR_PIN,INVERT_E_DIR);    
    e_steps++;
    WRITE(E_STEP_PIN, HIGH);
  } 
  if (e_steps > 0) {
    WRITE(E_DIR_PIN,!INVERT_E_DIR);
    e_steps--;
    WRITE(E_STEP_PIN, HIGH);
  }
  old_OCR0A += 25; // 10kHz interrupt
  OCR0A = old_OCR0A;
}
#endif // ADVANCE
void st_init()
{
  // waveform generation = 0100 = CTC
  TCCR1B &= ~(1<