diff options
-rw-r--r-- | README | 3 | ||||
-rw-r--r-- | Sprinter/Configuration.h | 123 | ||||
-rw-r--r-- | Sprinter/Makefile | 12 | ||||
-rw-r--r-- | Sprinter/Sprinter.h | 115 | ||||
-rw-r--r-- | Sprinter/Sprinter.pde | 2704 | ||||
-rw-r--r-- | Sprinter/arc_func.cpp | 143 | ||||
-rw-r--r-- | Sprinter/arc_func.h | 32 | ||||
-rw-r--r-- | Sprinter/heater.cpp | 574 | ||||
-rw-r--r-- | Sprinter/heater.h | 119 | ||||
-rw-r--r-- | Sprinter/pins.h | 4 | ||||
-rw-r--r-- | Sprinter/speed_lookuptable.h | 76 |
11 files changed, 2846 insertions, 1059 deletions
@@ -40,7 +40,8 @@ Software installation 1. Install the required packages (gcc-avr, avr-libc, etc.)
sudo apt-get install arduino-core
-2. Get the arduino software version 0018, uncompress it in a directory
+2. Get the arduino software version 0018 (0023 works for RAMPS), uncompress it in a directory
+Arduino software v1 DOES NOT work with Sprinter yet!
http://www.arduino.cc/en/Main/Software
3. Get the sanguino software, version 0018
diff --git a/Sprinter/Configuration.h b/Sprinter/Configuration.h index 250a2d2..47e1590 100644 --- a/Sprinter/Configuration.h +++ b/Sprinter/Configuration.h @@ -14,7 +14,7 @@ // Gen 3 Plus = 21 // gen 3 Monolithic Electronics = 22 // Gen3 PLUS for TechZone Gen3 Remix Motherboard = 23 -#define MOTHERBOARD 3 +#define MOTHERBOARD 62 //// Thermistor settings: // 1 is 100k thermistor @@ -29,12 +29,13 @@ //// Calibration variables // X, Y, Z, E steps per unit - Metric Prusa Mendel with Wade extruder: -float axis_steps_per_unit[] = {80, 80, 3200/1.25,700}; +#define _AXIS_STEP_PER_UNIT {80, 80, 3200/1.25,700} // Metric Prusa Mendel with Makergear geared stepper extruder: -//float axis_steps_per_unit[] = {80,80,3200/1.25,1380}; +//#define _AXIS_STEP_PER_UNIT {80,80,3200/1.25,1380} // MakerGear Hybrid Prusa Mendel: // Z axis value is for .9 stepper(if you have 1.8 steppers for Z, you need to use 2272.7272) -//float axis_steps_per_unit[] = {104.987, 104.987, 4545.4544, 1487}; +//#define _AXIS_STEP_PER_UNIT {104.987, 104.987, 4545.4544, 1487} + //// Endstop Settings #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors @@ -47,18 +48,27 @@ const bool Z_ENDSTOP_INVERT = false; // This determines the communication speed of the printer #define BAUDRATE 115200 +//#define BAUDRATE 250000 // Comment out (using // at the start of the line) to disable SD support: #define SDSUPPORT +// Uncomment to make run init.g from SD on boot +//#define SDINITFILE + +//#define SD_FAST_XFER_AKTIV + +//----------------------------------------------------------------------- //// ADVANCED SETTINGS - to tweak parameters +//----------------------------------------------------------------------- #ifdef SDSUPPORT - //Fast transfer chunk size (> 1024 is unstable, change at your own risk). - #define SD_FAST_XFER_CHUNK_SIZE 1024 + #ifdef SD_FAST_XFER_AKTIV + //Fast transfer chunk size (> 1024 is unstable, change at your own risk). + #define SD_FAST_XFER_CHUNK_SIZE 1024 + #endif #endif -#include "thermistortables.h" // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 #define X_ENABLE_ON 0 @@ -81,23 +91,28 @@ const bool INVERT_Y_DIR = false; const bool INVERT_Z_DIR = true; const bool INVERT_E_DIR = false; + //// ENDSTOP SETTINGS: // Sets direction of endstops when homing; 1=MAX, -1=MIN #define X_HOME_DIR -1 #define Y_HOME_DIR -1 #define Z_HOME_DIR -1 + const bool min_software_endstops = false; //If true, axis won't move to coordinates less than zero. -const bool max_software_endstops = true; //If true, axis won't move to coordinates greater than the defined lengths below. +const bool max_software_endstops = true; //If true, axis won't move to coordinates greater than the defined lengths below. + +//Max Length for Prusa Mendel, check the ways of your axis and set this Values const int X_MAX_LENGTH = 200; const int Y_MAX_LENGTH = 200; const int Z_MAX_LENGTH = 100; //// MOVEMENT SETTINGS const int NUM_AXIS = 4; // The axis order in all axis related arrays is X, Y, Z, E -float max_feedrate[] = {200000, 200000, 240, 500000}; -float homing_feedrate[] = {1500,1500,120}; -bool axis_relative_modes[] = {false, false, false, false}; +#define _MAX_FEEDRATE {200000, 200000, 240, 500000} +#define _HOMING_FEEDRATE {1500,1500,120} +#define _AXIS_RELATIVE_MODES {false, false, false, false} + // Min step delay in microseconds. If you are experiencing missing steps, try to raise the delay microseconds, but be aware this // If you enable this, make sure STEP_DELAY_RATIO is disabled. @@ -119,29 +134,87 @@ long min_time_before_dir_change = 30; //milliseconds //// Acceleration settings #ifdef RAMP_ACCELERATION // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. -float max_start_speed_units_per_second[] = {25.0,25.0,0.2,10.0}; -long max_acceleration_units_per_sq_second[] = {1000,1000,50,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts -long max_travel_acceleration_units_per_sq_second[] = {500,500,50,500}; // X, Y, Z max acceleration in mm/s^2 for travel moves +#define _ACCELERATION 2000 // Normal acceleration mm/s^2 +#define _RETRACT_ACCELERATION 7000 // Normal acceleration mm/s^2 +#define _MAX_XY_JERK (20.0*60) +#define _MAX_Z_JERK (0.4*60) +#define _MAX_START_SPEED_UNITS_PER_SECOND {25.0,25.0,0.2,10.0} +#define _MAX_ACCELERATION_UNITS_PER_SQ_SECOND {500,500,50,500} // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts +#define _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND {500,500,50,500} // X, Y, Z max acceleration in mm/s^2 for travel moves #endif + // Machine UUID // This may be useful if you have multiple machines and wish to identify them by using the M115 command. // By default we set it to zeros. -char uuid[] = "00000000-0000-0000-0000-000000000000"; +#define _DEF_CHAR_UUID "00000000-0000-0000-0000-000000000000" + +//----------------------------------------------------------------------- +//// Planner buffer Size +//----------------------------------------------------------------------- + +// The number of linear motions that can be in the plan at any give time +// if the SD Card need to much memory reduce the Values for Plannerpuffer (base of 2) +#ifdef SDSUPPORT + #define BLOCK_BUFFER_SIZE 16 + #define BLOCK_BUFFER_MASK 0x0f +#else + #define BLOCK_BUFFER_SIZE 16 + #define BLOCK_BUFFER_MASK 0x0f +#endif + +//----------------------------------------------------------------------- +//// SETTINGS FOR ARC FUNCTION (Command G2/G2) +//----------------------------------------------------------------------- + +// Arc interpretation settings: +//Step to split a cirrcle in small Lines +#define MM_PER_ARC_SEGMENT 1 +//After this count of steps a new SIN / COS caluclation is startet to correct the circle interpolation +#define N_ARC_CORRECTION 25 + +//----------------------------------------------------------------------- +//// HEATERCONTROL AND PID PARAMETERS +//----------------------------------------------------------------------- + +//Testfunction to adjust the Hotend temperatur in case of Printingspeed +//If the Printer print slow the Temp is going to AUTO_TEMP_MIN +//At the moment this Value dont change the targettemp from the Hotend +//The result of this function is only send with the Temperaturerequest to the host +//#define AUTOTEMP +#ifdef AUTOTEMP + #define AUTO_TEMP_MAX 240 + #define AUTO_TEMP_MIN 205 + #define AUTO_TEMP_FACTOR 0.025 + #define AUTOTEMP_OLDWEIGHT 0.98 +#endif + //// AD595 THERMOCOUPLE SUPPORT UNTESTED... USE WITH CAUTION!!!! //// PID settings: // Uncomment the following line to enable PID support. This is untested and could be disastrous. Be careful. -//#define PIDTEMP 1 +#define PIDTEMP 1 #ifdef PIDTEMP +//Sanguinololu 1.2 and above, the PWM Output Hotend Timer 1 is used for the Hardware PWM +//but in this Software use Timer1 for the Stepperfunction so it is not possible to use the "analogWrite" function. +//This Soft PWM use Timer 2 with 400 Hz to drive the PWM for the hotend +#define PID_SOFT_PWM + +//Measure the MIN/MAX Value of the Hotend Temp and show it with +//Command M601 / Command M602 Reset the MIN/MAX Value +//#define DEBUG_HEATER_TEMP + +//PID Controler Settings #define PID_INTEGRAL_DRIVE_MAX 80 // too big, and heater will lag after changing temperature, too small and it might not compensate enough for long-term errors #define PID_PGAIN 2560 //256 is 1.0 // value of X means that error of 1 degree is changing PWM duty by X, probably no need to go over 25 #define PID_IGAIN 64 //256 is 1.0 // value of X (e.g 0.25) means that each degree error over 1 sec (2 measurements) changes duty cycle by 2X (=0.5) units (verify?) #define PID_DGAIN 4096 //256 is 1.0 // value of X means that around reached setpoint, each degree change over one measurement (half second) adjusts PWM by X units to compensate + // magic formula 1, to get approximate "zero error" PWM duty. Take few measurements with low PWM duty and make linear fit to get the formula -#define HEATER_DUTY_FOR_SETPOINT(setpoint) ((int)((187L*(long)setpoint)>>8)-27) // for my makergear hot-end: linear fit {50,10},{60,20},{80,30},{105,50},{176,100},{128,64},{208,128} +// for my makergear hot-end: linear fit {50,10},{60,20},{80,30},{105,50},{176,100},{128,64},{208,128} +#define HEATER_DUTY_FOR_SETPOINT(setpoint) ((int)((187L*(long)setpoint)>>8)-27) // magic formula 2, to make led brightness approximately linear #define LED_PWM_FOR_BRIGHTNESS(brightness) ((64*brightness-1384)/(300-brightness)) #endif @@ -152,12 +225,14 @@ char uuid[] = "00000000-0000-0000-0000-000000000000"; // How often should the heater check for new temp readings, in milliseconds #define HEATER_CHECK_INTERVAL 500 #define BED_CHECK_INTERVAL 5000 + // Comment the following line to enable heat management during acceleration #define DISABLE_CHECK_DURING_ACC #ifndef DISABLE_CHECK_DURING_ACC // Uncomment the following line to disable heat management during moves //#define DISABLE_CHECK_DURING_MOVE #endif + // Uncomment the following line to disable heat management during travel moves (and extruder-only moves, eg: retracts), strongly recommended if you are missing steps mid print. // Probably this should remain commented if are using PID. // It also defines the max milliseconds interval after which a travel move is not considered so for the sake of this feature. @@ -167,6 +242,7 @@ char uuid[] = "00000000-0000-0000-0000-000000000000"; //#define SMOOTHING //#define SMOOTHFACTOR 16 //best to use a power of two here - determines how many values are averaged together by the smoothing algorithm + //// Experimental watchdog and minimal temp // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109 @@ -200,13 +276,22 @@ char uuid[] = "00000000-0000-0000-0000-000000000000"; //#define CONTROLLERFAN_PIN 23 //Pin used for the fan to cool controller, comment out to disable this function #define CONTROLLERFAN_SEC 60 //How many seconds, after all motors were disabled, the fan should run + +//----------------------------------------------------------------------- +// DEBUGING +//----------------------------------------------------------------------- + + +//Uncomment this to see on the host if a wrong or unknown Command is recived +//Only for Testing !!! +//#define SEND_WRONG_CMD_INFO + // Uncomment the following line to enable debugging. You can better control debugging below the following line //#define DEBUG #ifdef DEBUG //#define DEBUG_PREPARE_MOVE //Enable this to debug prepare_move() function - //#define DEBUG_BRESENHAM //Enable this to debug the Bresenham algorithm //#define DEBUG_RAMP_ACCELERATION //Enable this to debug all constant acceleration info - //#define DEBUG_MOVE_TIME //Enable this to time each move and print the result + //#define DEBUG_MOVE_TIME //Enable this to time each move and print the result //#define DEBUG_HEAT_MGMT //Enable this to debug heat management. WARNING, this will cause axes to jitter! //#define DEBUG_DISABLE_CHECK_DURING_TRAVEL //Debug the namesake feature, see above in this file #endif diff --git a/Sprinter/Makefile b/Sprinter/Makefile index 7e888b0..639cf1b 100644 --- a/Sprinter/Makefile +++ b/Sprinter/Makefile @@ -127,11 +127,11 @@ ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS) # Default target. -all: applet_files build sizeafter +all: build sizeafter build: elf hex -applet_files: $(TARGET).pde +applet/$(TARGET).cpp: $(TARGET).pde # Here is the "preprocessing". # It creates a .cpp file based with the same name as the .pde file. # On top of the new .cpp file comes the WProgram.h header. @@ -155,7 +155,7 @@ upload: applet/$(TARGET).hex $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) - # Display size of file. +# Display size of file. HEXSIZE = $(SIZE) --target=$(FORMAT) applet/$(TARGET).hex ELFSIZE = $(SIZE) applet/$(TARGET).elf sizebefore: @@ -198,8 +198,8 @@ extcoff: $(TARGET).elf .elf.sym: $(NM) -n $< > $@ - # Link: create ELF output file from library. -applet/$(TARGET).elf: $(TARGET).pde applet/core.a +# Link: create ELF output file from library. +applet/$(TARGET).elf: applet/core.a applet/$(TARGET).cpp $(CC) $(ALL_CFLAGS) -Wl,--gc-sections -o $@ applet/$(TARGET).cpp -L. applet/core.a $(LDFLAGS) applet/core.a: $(OBJ) @@ -244,4 +244,4 @@ depend: >> $(MAKEFILE); \ $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE) -.PHONY: all build elf hex eep lss sym program coff extcoff clean depend applet_files sizebefore sizeafter +.PHONY: all build elf hex eep lss sym program coff extcoff clean depend sizebefore sizeafter diff --git a/Sprinter/Sprinter.h b/Sprinter/Sprinter.h index 2ac9163..b90738c 100644 --- a/Sprinter/Sprinter.h +++ b/Sprinter/Sprinter.h @@ -2,52 +2,9 @@ // Licence: GPL #include <WProgram.h> #include "fastio.h" -extern "C" void __cxa_pure_virtual(); -void __cxa_pure_virtual(){}; -void get_command(); -void process_commands(); - -void manage_inactivity(byte debug); -void setup_acceleration(); - -void manage_heater(); - -#if defined HEATER_USES_THERMISTOR -#define temp2analogh( c ) temp2analog_thermistor(c,temptable,NUMTEMPS) -#define analog2temp( c ) analog2temp_thermistor(c,temptable,NUMTEMPS) -#elif defined HEATER_USES_AD595 -#define temp2analogh( c ) temp2analog_ad595(c) -#define analog2temp( c ) analog2temp_ad595(c) -#elif defined HEATER_USES_MAX6675 -#define temp2analogh( c ) temp2analog_max6675(c) -#define analog2temp( c ) analog2temp_max6675(c) -#endif - -#if defined BED_USES_THERMISTOR -#define temp2analogBed( c ) temp2analog_thermistor((c),bedtemptable,BNUMTEMPS) -#define analog2tempBed( c ) analog2temp_thermistor((c),bedtemptable,BNUMTEMPS) -#elif defined BED_USES_AD595 -#define temp2analogBed( c ) temp2analog_ad595(c) -#define analog2tempBed( c ) analog2temp_ad595(c) -#elif defined BED_USES_MAX6675 -#define temp2analogBed( c ) temp2analog_max6675(c) -#define analog2tempBed( c ) analog2temp_max6675(c) -#endif - -#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR) -int temp2analog_thermistor(int celsius, const short table[][2], int numtemps); -int analog2temp_thermistor(int raw,const short table[][2], int numtemps); -#endif -#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595) -int temp2analog_ad595(int celsius); -int analog2temp_ad595(int raw); -#endif +extern "C" void __cxa_pure_virtual(); -#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675) -int temp2analog_max6675(int celsius); -int analog2temp_max6675(int raw); -#endif #if X_ENABLE_PIN > -1 #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) @@ -78,12 +35,78 @@ int analog2temp_max6675(int raw); #define disable_e() ; #endif +#define X_AXIS 0 +#define Y_AXIS 1 +#define Z_AXIS 2 +#define E_AXIS 3 + + +// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in +// the source g-code and may never actually be reached if acceleration management is active. +typedef struct { + // Fields used by the bresenham algorithm for tracing the line + long steps_x, steps_y, steps_z, steps_e; // Step count along each axis + + long step_event_count; // The number of step events required to complete this block + volatile long accelerate_until; // The index of the step event on which to stop acceleration + volatile long decelerate_after; // The index of the step event on which to start decelerating + volatile long acceleration_rate; // The acceleration rate used for acceleration calculation + unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) + + #ifdef ADVANCE + long advance_rate; + volatile long initial_advance; + volatile long final_advance; + float advance; + #endif + + // Fields used by the motion planner to manage acceleration + float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis + float nominal_speed; // The nominal speed for this block in mm/min + float millimeters; // The total travel of this block in mm + float entry_speed; + float acceleration; // acceleration mm/sec^2 + + // Settings for the trapezoid generator + long nominal_rate; // The nominal step rate for this block in step_events/sec + volatile long initial_rate; // The jerk-adjusted step rate at start of block + volatile long final_rate; // The minimal rate at exit + long acceleration_st; // acceleration steps/sec^2 + volatile char busy; +} block_t; + + void FlushSerialRequestResend(); void ClearToSend(); +void showString (PGM_P s); + +void manage_inactivity(byte debug); + + void get_coordinates(); void prepare_move(); -void linear_move(unsigned long steps_remaining[]); -void do_step(int axis); +void prepare_arc_move(char isclockwise); +void plan_buffer_line(float x, float y, float z, float e, float feed_rate); + void kill(byte debug); +void check_axes_activity(); +void plan_init(); +void st_init(); +void tp_init(); +void plan_buffer_line(float x, float y, float z, float e, float feed_rate); +void plan_set_position(float x, float y, float z, float e); +void st_wake_up(); +void st_synchronize(); + + +#ifdef DEBUG +void log_message(char* message); +void log_bool(char* message, bool value); +void log_int(char* message, int value); +void log_long(char* message, long value); +void log_float(char* message, float value); +void log_uint(char* message, unsigned int value); +void log_ulong(char* message, unsigned long value); +#endif diff --git a/Sprinter/Sprinter.pde b/Sprinter/Sprinter.pde index 874c333..8d97fbd 100644 --- a/Sprinter/Sprinter.pde +++ b/Sprinter/Sprinter.pde @@ -1,15 +1,68 @@ - // Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. -// Licence: GPL +/* + Reprap firmware based on Sprinter + Optimize for Sanguinololu 1.2 and above + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +/* + This firmware is a mashup between Sprinter,grbl and parts from marlin. + (https://github.com/kliment/Sprinter) + + Changes by Doppler Michael (midopple) + + Planner is from Simen Svale Skogsrud + https://github.com/simen/grbl + + Parts of Marlin Firmware from ErikZalm + https://github.com/ErikZalm/Marlin-non-gen6 + + Sprinter V2 + +- Look Vorward Funktion - +- Stepper Control with Timer 1 +- SOFT PWM for Extruder heating --> Free Timer 1 +- G2 / G3 Command for arc real arc +- Baudrate 250 kbaud +- M30 Command delete file on SD Card +- Text moved to flash to free RAM +- M203 Command for Temp debugging + +*/ + +#include <avr/pgmspace.h> +#include <math.h> #include "fastio.h" #include "Configuration.h" #include "pins.h" #include "Sprinter.h" +#include "speed_lookuptable.h" +#include "arc_func.h" +#include "heater.h" #ifdef SDSUPPORT #include "SdFat.h" #endif + +#ifndef CRITICAL_SECTION_START +#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli() +#define CRITICAL_SECTION_END SREG = _sreg +#endif //CRITICAL_SECTION_START + +void __cxa_pure_virtual(){}; + // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes @@ -17,6 +70,8 @@ //------------------- // G0 -> G1 // G1 - Coordinated Movement X Y Z E +// G2 - CW ARC +// G3 - CCW ARC // G4 - Dwell S<seconds> or P<milliseconds> // G28 - Home all Axis // G90 - Use Absolute Coordinates @@ -32,7 +87,6 @@ // M114 - Display current position //Custom M Codes -// M80 - Turn on Power Supply // M20 - List SD card // M21 - Init SD card // M22 - Release SD card @@ -43,7 +97,9 @@ // M27 - Report SD print status // M28 - Start SD write (M28 filename.g) // M29 - Stop SD write -// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on +// - <filename> - Delete file on sd card +// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on +// M80 - Turn on Power Supply // M81 - Turn off Power Supply // M82 - Set E codes absolute (default) // M83 - Set E codes relative while in Absolute Coordinates (G90) mode @@ -52,26 +108,56 @@ // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default) // M92 - Set axis_steps_per_unit - same syntax as G92 // M115 - Capabilities string +// M119 - Show Endstopper State // M140 - Set bed target temp // M190 - Wait for bed current temp to reach target temp. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) +// M203 - Set temperture monitor to Sx +// M220 - set speed factor override percentage S:factor in percent +// Debug feature / Testing the PID for Hotend +// M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperatur while printing) +// M602 - Reset Temp jitter from Extruder (min / max val) --> Dont use it while Printing +// M603 - Show Free Ram -//Stepper Movement Variables +#define _VERSION_TEXT "1.2.20T / 27.01.2012" + +//Stepper Movement Variables char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; +float axis_steps_per_unit[] = _AXIS_STEP_PER_UNIT; + +float max_feedrate[] = _MAX_FEEDRATE; +float homing_feedrate[] = _HOMING_FEEDRATE; +bool axis_relative_modes[] = _AXIS_RELATIVE_MODES; + bool move_direction[NUM_AXIS]; unsigned long axis_previous_micros[NUM_AXIS]; -unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater; +unsigned long previous_micros = 0; unsigned long move_steps_to_take[NUM_AXIS]; + #ifdef RAMP_ACCELERATION -unsigned long axis_max_interval[NUM_AXIS]; -unsigned long axis_steps_per_sqr_second[NUM_AXIS]; -unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS]; -unsigned long max_interval; -unsigned long steps_per_sqr_second, plateau_steps; + float acceleration = _ACCELERATION; // Normal acceleration mm/s^2 + float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2 + float max_xy_jerk = _MAX_XY_JERK; + float max_z_jerk = _MAX_Z_JERK; + float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND; + long max_acceleration_units_per_sq_second[] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts + long max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves + + unsigned long axis_max_interval[NUM_AXIS]; + unsigned long axis_steps_per_sqr_second[NUM_AXIS]; + unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS]; + unsigned long max_interval; + unsigned long steps_per_sqr_second, plateau_steps; #endif + +//adjustable feed faktor for online tuning printerspeed +volatile int feedmultiply=100; //100->original / 200-> Faktor 2 / 50 -> Faktor 0.5 +int saved_feedmultiply; +volatile bool feedmultiplychanged=false; + boolean acceleration_enabled = false, accelerating = false; unsigned long interval; float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; @@ -85,12 +171,18 @@ long gcode_N, gcode_LastN; bool relative_mode = false; //Determines Absolute or Relative Coordinates bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. long timediff = 0; + //experimental feedrate calc -float d = 0; -float axis_diff[NUM_AXIS] = {0, 0, 0, 0}; +//float d = 0; +//float axis_diff[NUM_AXIS] = {0, 0, 0, 0}; + +//For arc centerpont, send bei Command G2/G3 +float offset[3] = {0.0, 0.0, 0.0}; + #ifdef STEP_DELAY_RATIO long long_step_delay_ratio = STEP_DELAY_RATIO * 100; #endif + ///oscillation reduction #ifdef RAPID_OSCILLATION_REDUCTION float cumm_wait_time_in_dir[NUM_AXIS]={0.0,0.0,0.0,0.0}; @@ -98,64 +190,43 @@ float axis_diff[NUM_AXIS] = {0, 0, 0, 0}; float osc_wait_remainder = 0.0; #endif -// comm variables +// comm variables and Commandbuffer +// BUFSIZE is reduced from 8 to 5 to free more RAM for the PLANNER #define MAX_CMD_SIZE 96 -#define BUFSIZE 8 +#define BUFSIZE 5 //8 char cmdbuffer[BUFSIZE][MAX_CMD_SIZE]; bool fromsd[BUFSIZE]; + +//Need 1kb Ram --> only work with Atmega1284 +#ifdef SD_FAST_XFER_AKTIV + char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1]; + int lastxferchar; + long xferbytes; +#endif + int bufindr = 0; int bufindw = 0; int buflen = 0; -int i = 0; char serial_char; int serial_count = 0; boolean comment_mode = false; char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc -// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the -// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25 -// degree increments (i.e. 100=25 deg). - -int target_raw = 0; -int target_temp = 0; -int current_raw = 0; -int target_bed_raw = 0; -int current_bed_raw = 0; -int tt = 0, bt = 0; -#ifdef PIDTEMP - int temp_iState = 0; - int prev_temp = 0; - int pTerm; - int iTerm; - int dTerm; - //int output; - int error; - int heater_duty = 0; - const int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN; - const int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN; -#endif -#ifndef HEATER_CURRENT - #define HEATER_CURRENT 255 -#endif -#ifdef SMOOTHING - uint32_t nma = 0; -#endif -#ifdef WATCHPERIOD - int watch_raw = -1000; - unsigned long watchmillis = 0; -#endif -#ifdef MINTEMP - int minttemp = temp2analogh(MINTEMP); -#endif -#ifdef MAXTEMP -int maxttemp = temp2analogh(MAXTEMP); -#endif - +//Send Temperature in °C to Host +int hotendtC = 0, bedtempC = 0; + //Inactivity shutdown variables unsigned long previous_millis_cmd = 0; unsigned long max_inactive_time = 0; unsigned long stepper_inactive_time = 0; +//Temp Montor for repetier +unsigned char manage_monitor = 255; + + +//------------------------------------------------ +//Init the SD card +//------------------------------------------------ #ifdef SDSUPPORT Sd2Card card; SdVolume volume; @@ -166,49 +237,41 @@ unsigned long stepper_inactive_time = 0; bool sdmode = false; bool sdactive = false; bool savetosd = false; - int16_t n; - char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1]; - int lastxferchar; - long xferbytes; + int16_t read_char_n; - void initsd(){ + void initsd() + { sdactive = false; #if SDSS >- 1 if(root.isOpen()) root.close(); + if (!card.init(SPI_FULL_SPEED,SDSS)){ //if (!card.init(SPI_HALF_SPEED,SDSS)) - Serial.println("SD init fail"); + showString(PSTR("SD init fail\r\n")); } else if (!volume.init(&card)) - Serial.println("volume.init failed"); + showString(PSTR("volume.init failed\r\n")); else if (!root.openRoot(&volume)) - Serial.println("openRoot failed"); - else - sdactive = true; + showString(PSTR("openRoot failed\r\n")); + else{ + sdactive = true; + print_disk_info(); + + #ifdef SDINITFILE + file.close(); + if(file.open(&root, "init.g", O_READ)){ + sdpos = 0; + filesize = file.fileSize(); + sdmode = true; + } + #endif + } + #endif } - inline void write_command(char *buf){ - char* begin = buf; - char* npos = 0; - char* end = buf + strlen(buf) - 1; - - file.writeError = false; - if((npos = strchr(buf, 'N')) != NULL){ - begin = strchr(npos, ' ') + 1; - end = strchr(npos, '*') - 1; - } - end[1] = '\r'; - end[2] = '\n'; - end[3] = '\0'; - //Serial.println(begin); - file.write(begin); - if (file.writeError){ - Serial.println("error writing to file"); - } - } - + #ifdef SD_FAST_XFER_AKTIV void fast_xfer() { char *pstr; @@ -304,16 +367,131 @@ unsigned long stepper_inactive_time = 0; file.sync(); file.close(); } + #endif + + + void print_disk_info(void) + { + + // print the type of card + showString(PSTR("\nCard type: ")); + switch(card.type()) + { + case SD_CARD_TYPE_SD1: + showString(PSTR("SD1\r\n")); + break; + case SD_CARD_TYPE_SD2: + showString(PSTR("SD2\r\n")); + break; + case SD_CARD_TYPE_SDHC: + showString(PSTR("SDHC\r\n")); + break; + default: + showString(PSTR("Unknown\r\n")); + } + + //uint64_t freeSpace = volume.clusterCount()*volume.blocksPerCluster()*512; + //uint64_t occupiedSpace = (card.cardSize()*512) - freeSpace; + // print the type and size of the first FAT-type volume + uint32_t volumesize; + showString(PSTR("\nVolume type is FAT")); + Serial.println(volume.fatType(), DEC); + + volumesize = volume.blocksPerCluster(); // clusters are collections of blocks + volumesize *= volume.clusterCount(); // we'll have a lot of clusters + volumesize *= 512; // SD card blocks are always 512 bytes + volumesize /= 1024; //kbytes + volumesize /= 1024; //Mbytes + showString(PSTR("Volume size (Mbytes): ")); + Serial.println(volumesize); + + // list all files in the card with date and size + //root.ls(LS_R | LS_DATE | LS_SIZE); + } + + + + + + inline void write_command(char *buf) + { + char* begin = buf; + char* npos = 0; + char* end = buf + strlen(buf) - 1; + + file.writeError = false; + + if((npos = strchr(buf, 'N')) != NULL) + { + begin = strchr(npos, ' ') + 1; + end = strchr(npos, '*') - 1; + } + + end[1] = '\r'; + end[2] = '\n'; + end[3] = '\0'; + + //Serial.println(begin); + file.write(begin); + + if (file.writeError) + { + showString(PSTR("error writing to file\r\n")); + } + } + #endif +int FreeRam1(void) +{ + extern int __bss_end; + extern int* __brkval; + int free_memory; + + if (reinterpret_cast<int>(__brkval) == 0) + { + // if no heap use from end of bss section + free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(&__bss_end); + } + else + { + // use from top of stack to heap + free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(__brkval); + } + + return free_memory; +} + +//------------------------------------------------ +//Print a String from Flash to Serial (save RAM) +//------------------------------------------------ +void showString (PGM_P s) +{ + char c; + + while ((c = pgm_read_byte(s++)) != 0) + Serial.print(c); +} + + +//------------------------------------------------ +// Init +//------------------------------------------------ void setup() { + Serial.begin(BAUDRATE); - Serial.println("start"); - for(int i = 0; i < BUFSIZE; i++){ + showString(PSTR("SprinterV2\r\n")); + showString(PSTR(_VERSION_TEXT)); + showString(PSTR("\r\n")); + showString(PSTR("start\r\n")); + + for(int i = 0; i < BUFSIZE; i++) + { fromsd[i] = false; } + //Initialize Dir Pins @@ -348,7 +526,7 @@ void setup() SET_OUTPUT(E_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH); #endif - + #ifdef CONTROLLERFAN_PIN SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif @@ -424,7 +602,7 @@ void setup() #if (LED_PIN > -1) SET_OUTPUT(LED_PIN); WRITE(LED_PIN,LOW); - #endif + #endif //Initialize Step Pins #if (X_STEP_PIN > -1) @@ -439,8 +617,13 @@ void setup() #if (E_STEP_PIN > -1) SET_OUTPUT(E_STEP_PIN); #endif + #ifdef RAMP_ACCELERATION - setup_acceleration(); + for(int i=0; i < NUM_AXIS; i++){ + axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]); + axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; +// axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; + } #endif #ifdef HEATER_USES_MAX6675 @@ -464,125 +647,172 @@ void setup() SET_OUTPUT(SDPOWER); WRITE(SDPOWER,HIGH); #endif + + showString(PSTR("SD Start\r\n")); initsd(); #endif + #ifdef PID_SOFT_PWM + showString(PSTR("Soft PWM Init\r\n")); + init_Timer2_softpwm(); + #endif + + showString(PSTR("Planner Init\r\n")); + plan_init(); // Initialize planner; + + showString(PSTR("Stepper Timer init\r\n")); + st_init(); // Initialize stepper + + //Free Ram + showString(PSTR("Free Ram: ")); + Serial.println(FreeRam1()); + + //Planner Buffer Size + showString(PSTR("Plan Buffer Size:")); + Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); + showString(PSTR(" / ")); + Serial.println(BLOCK_BUFFER_SIZE); } + +//------------------------------------------------ +//MAIN LOOP +//------------------------------------------------ void loop() { - if(buflen<3) - get_command(); + if(buflen < (BUFSIZE-1)) + get_command(); - if(buflen){ + if(buflen) + { #ifdef SDSUPPORT - if(savetosd){ - if(strstr(cmdbuffer[bufindr],"M29") == NULL){ + if(savetosd) + { + if(strstr(cmdbuffer[bufindr],"M29") == NULL) + { write_command(cmdbuffer[bufindr]); - Serial.println("ok"); - }else{ + showString(PSTR("ok\r\n")); + } + else + { file.sync(); file.close(); savetosd = false; - Serial.println("Done saving file."); + showString(PSTR("Done saving file.\r\n")); } - }else{ + } + else + { process_commands(); } #else process_commands(); #endif + buflen = (buflen-1); bufindr = (bufindr + 1)%BUFSIZE; - } - //check heater every n milliseconds - manage_heater(); - manage_inactivity(1); } + + //check heater every n milliseconds + manage_heater(); + manage_inactivity(1); +} +//------------------------------------------------ +//READ COMMAND FROM UART +//------------------------------------------------ inline void get_command() { - while( Serial.available() > 0 && buflen < BUFSIZE) { + while( Serial.available() > 0 && buflen < BUFSIZE) + { serial_char = Serial.read(); if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) { if(!serial_count) return; //if empty line cmdbuffer[bufindw][serial_count] = 0; //terminate string - if(!comment_mode){ - fromsd[bufindw] = false; - if(strstr(cmdbuffer[bufindw], "N") != NULL) - { - strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); - gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10)); - if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) { - Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:"); - Serial.println(gcode_LastN); - //Serial.println(gcode_N); - FlushSerialRequestResend(); - serial_count = 0; - return; - } + if(!comment_mode) + { + fromsd[bufindw] = false; + if(strstr(cmdbuffer[bufindw], "N") != NULL) + { + strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); + gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10)); + if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) + { + showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:")); + Serial.println(gcode_LastN); + //Serial.println(gcode_N); + FlushSerialRequestResend(); + serial_count = 0; + return; + } - if(strstr(cmdbuffer[bufindw], "*") != NULL) - { - byte checksum = 0; - byte count = 0; - while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; - strchr_pointer = strchr(cmdbuffer[bufindw], '*'); - - if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) { - Serial.print("Error: checksum mismatch, Last Line:"); - Serial.println(gcode_LastN); - FlushSerialRequestResend(); - serial_count = 0; - return; - } - //if no errors, continue parsing - } - else - { - Serial.print("Error: No Checksum with line number, Last Line:"); - Serial.println(gcode_LastN); - FlushSerialRequestResend(); - serial_count = 0; - return; - } + if(strstr(cmdbuffer[bufindw], "*") != NULL) + { + byte checksum = 0; + byte count = 0; + while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; + strchr_pointer = strchr(cmdbuffer[bufindw], '*'); + + if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) + { + showString(PSTR("Error: checksum mismatch, Last Line:")); + Serial.println(gcode_LastN); + FlushSerialRequestResend(); + serial_count = 0; + return; + } + //if no errors, continue parsing + } + else + { + showString(PSTR("Error: No Checksum with line number, Last Line:")); + Serial.println(gcode_LastN); + FlushSerialRequestResend(); + serial_count = 0; + return; + } - gcode_LastN = gcode_N; - //if no errors, continue parsing - } - else // if we don't receive 'N' but still see '*' - { - if((strstr(cmdbuffer[bufindw], "*") != NULL)) - { - Serial.print("Error: No Line Number with checksum, Last Line:"); - Serial.println(gcode_LastN); - serial_count = 0; - return; - } - } - if((strstr(cmdbuffer[bufindw], "G") != NULL)){ - strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); - switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){ - case 0: - case 1: + gcode_LastN = gcode_N; + //if no errors, continue parsing + } + else // if we don't receive 'N' but still see '*' + { + if((strstr(cmdbuffer[bufindw], "*") != NULL)) + { + showString(PSTR("Error: No Line Number with checksum, Last Line:")); + Serial.println(gcode_LastN); + serial_count = 0; + return; + } + } + + if((strstr(cmdbuffer[bufindw], "G") != NULL)) + { + strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); + switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))) + { + case 0: + case 1: + case 2: //G2 + case 3: //G3 arc func #ifdef SDSUPPORT if(savetosd) break; #endif - Serial.println("ok"); - break; - default: - break; - } - - } + showString(PSTR("ok\r\n")); + //Serial.println("ok"); + break; + + default: + break; + } + } bufindw = (bufindw + 1)%BUFSIZE; buflen += 1; - } comment_mode = false; //for new command serial_count = 0; //clear buffer @@ -594,35 +824,39 @@ inline void get_command() } } #ifdef SDSUPPORT -if(!sdmode || serial_count!=0){ + if(!sdmode || serial_count!=0) + { return; -} - while( filesize > sdpos && buflen < BUFSIZE) { - n = file.read(); - serial_char = (char)n; - if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) + } + while( filesize > sdpos && buflen < BUFSIZE) + { + read_char_n = file.read(); + serial_char = (char)read_char_n; + if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || read_char_n == -1) { sdpos = file.curPosition(); - if(sdpos >= filesize){ + if(sdpos >= filesize) + { sdmode = false; - Serial.println("Done printing file"); + showString(PSTR("Done printing file\r\n")); } - if(!serial_count) return; //if empty line - cmdbuffer[bufindw][serial_count] = 0; //terminate string - if(!comment_mode){ - fromsd[bufindw] = true; - buflen += 1; - bufindw = (bufindw + 1)%BUFSIZE; - } - comment_mode = false; //for new command - serial_count = 0; //clear buffer + if(!serial_count) return; //if empty line + cmdbuffer[bufindw][serial_count] = 0; //terminate string + if(!comment_mode) + { + fromsd[bufindw] = true; + buflen += 1; + bufindw = (bufindw + 1)%BUFSIZE; + } + comment_mode = false; //for new command + serial_count = 0; //clear buffer } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; } -} + } #endif } @@ -638,6 +872,9 @@ inline bool code_seen(char code) return (strchr_pointer != NULL); //Return True if a character was found } +//------------------------------------------------ +// CHECK COMMAND AND CONVERT VALUES +//------------------------------------------------ inline void process_commands() { unsigned long codenum; //throw away variable @@ -658,6 +895,18 @@ inline void process_commands() //ClearToSend(); return; //break; + case 2: // G2 - CW ARC + get_arc_coordinates(); + prepare_arc_move(true); + previous_millis_cmd = millis(); + //break; + return; + case 3: // G3 - CCW ARC + get_arc_coordinates(); + prepare_arc_move(false); + previous_millis_cmd = millis(); + //break; + return; case 4: // G4 dwell codenum = 0; if(code_seen('P')) codenum = code_value(); // milliseconds to wait @@ -669,75 +918,112 @@ inline void process_commands() break; case 28: //G28 Home all Axis one at a time saved_feedrate = feedrate; - for(int i=0; i < NUM_AXIS; i++) { + saved_feedmultiply = feedmultiply; + feedmultiply = 100; + + for(int i=0; i < NUM_AXIS; i++) + { destination[i] = current_position[i]; } feedrate = 0; home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); - if((home_all_axis) || (code_seen(axis_codes[0]))) { - if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){ - current_position[0] = 0; - destination[0] = 1.5 * X_MAX_LENGTH * X_HOME_DIR; - feedrate = homing_feedrate[0]; + if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) + { + if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) + { + st_synchronize(); + current_position[X_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR; + feedrate = homing_feedrate[X_AXIS]; prepare_move(); - - current_position[0] = 0; - destination[0] = -5 * X_HOME_DIR; + + st_synchronize(); + current_position[X_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = -5 * X_HOME_DIR; prepare_move(); - - destination[0] = 10 * X_HOME_DIR; + + st_synchronize(); + destination[X_AXIS] = 10 * X_HOME_DIR; + feedrate = homing_feedrate[X_AXIS]/2 ; prepare_move(); - - current_position[0] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH; - destination[0] = current_position[0]; + st_synchronize(); + + current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[X_AXIS] = current_position[X_AXIS]; feedrate = 0; } } - - if((home_all_axis) || (code_seen(axis_codes[1]))) { - if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){ - current_position[1] = 0; - destination[1] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; - feedrate = homing_feedrate[1]; + showString(PSTR("HOME X AXIS\r\n")); + + if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) + { + if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) + { + current_position[Y_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; + feedrate = homing_feedrate[Y_AXIS]; prepare_move(); - - current_position[1] = 0; - destination[1] = -5 * Y_HOME_DIR; + st_synchronize(); + + current_position[Y_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Y_AXIS] = -5 * Y_HOME_DIR; prepare_move(); - - destination[1] = 10 * Y_HOME_DIR; + st_synchronize(); + + destination[Y_AXIS] = 10 * Y_HOME_DIR; + feedrate = homing_feedrate[Y_AXIS]/2; prepare_move(); - - current_position[1] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH; - destination[1] = current_position[1]; + st_synchronize(); + + current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Y_AXIS] = current_position[Y_AXIS]; feedrate = 0; } } - - if((home_all_axis) || (code_seen(axis_codes[2]))) { - if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){ - current_position[2] = 0; - destination[2] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; - feedrate = homing_feedrate[2]; + showString(PSTR("HOME Y AXIS\r\n")); + + if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) + { + if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) + { + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; + feedrate = homing_feedrate[Z_AXIS]; prepare_move(); - - current_position[2] = 0; - destination[2] = -2 * Z_HOME_DIR; + st_synchronize(); + + current_position[Z_AXIS] = 0; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Z_AXIS] = -2 * Z_HOME_DIR; prepare_move(); - - destination[2] = 10 * Z_HOME_DIR; + st_synchronize(); + + destination[Z_AXIS] = 3 * Z_HOME_DIR; + feedrate = homing_feedrate[Z_AXIS]/2; prepare_move(); - - current_position[2] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH; - destination[2] = current_position[2]; - feedrate = 0; - - } - } - + st_synchronize(); + + current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH; + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + destination[Z_AXIS] = current_position[Z_AXIS]; + feedrate = 0; + } + } + + showString(PSTR("HOME Z AXIS\r\n")); + feedrate = saved_feedrate; + feedmultiply = saved_feedmultiply; + previous_millis_cmd = millis(); break; case 90: // G90 @@ -747,11 +1033,21 @@ inline void process_commands() relative_mode = true; break; case 92: // G92 - for(int i=0; i < NUM_AXIS; i++) { + if(!code_seen(axis_codes[E_AXIS])) + st_synchronize(); + + for(int i=0; i < NUM_AXIS; i++) + { if(code_seen(axis_codes[i])) current_position[i] = code_value(); } + plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); break; - + default: + #ifdef SEND_WRONG_CMD_INFO + showString(PSTR("Unknown G-COM:")); + Serial.println(cmdbuffer[bufindr]); + #endif + break; } } @@ -763,9 +1059,9 @@ inline void process_commands() #ifdef SDSUPPORT case 20: // M20 - list SD card - Serial.println("Begin file list"); + showString(PSTR("Begin file list\r\n")); root.ls(); - Serial.println("End file list"); + showString(PSTR("End file list\r\n")); break; case 21: // M21 - init SD card sdmode = false; @@ -776,72 +1072,88 @@ inline void process_commands() sdactive = false; break; case 23: //M23 - Select file - if(sdactive){ + if(sdactive) + { sdmode = false; file.close(); starpos = (strchr(strchr_pointer + 4,'*')); + if(starpos!=NULL) *(starpos-1)='\0'; - if (file.open(&root, strchr_pointer + 4, O_READ)) { - Serial.print("File opened:"); + + if (file.open(&root, strchr_pointer + 4, O_READ)) + { + showString(PSTR("File opened:")); Serial.print(strchr_pointer + 4); - Serial.print(" Size:"); + showString(PSTR(" Size:")); Serial.println(file.fileSize()); sdpos = 0; filesize = file.fileSize(); - Serial.println("File selected"); + showString(PSTR("File selected\r\n")); } - else{ - Serial.println("file.open failed"); + else + { + showString(PSTR("file.open failed\r\n")); } } break; case 24: //M24 - Start SD print - if(sdactive){ + if(sdactive) + { sdmode = true; } break; case 25: //M25 - Pause SD print - if(sdmode){ + if(sdmode) + { sdmode = false; } break; case 26: //M26 - Set SD index - if(sdactive && code_seen('S')){ + if(sdactive && code_seen('S')) + { sdpos = code_value_long(); file.seekSet(sdpos); } break; case 27: //M27 - Get SD status - if(sdactive){ - Serial.print("SD printing byte "); + if(sdactive) + { + showString(PSTR("SD printing byte ")); Serial.print(sdpos); - Serial.print("/"); + showString(PSTR("/")); Serial.println(filesize); - }else{ - Serial.println("Not SD printing"); + } + else + { + showString(PSTR("Not SD printing\r\n")); } break; - case 28: //M28 - Start SD write - if(sdactive){ + case 28: //M28 - Start SD write + if(sdactive) + { char* npos = 0; file.close(); sdmode = false; starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos != NULL){ + if(starpos != NULL) + { npos = strchr(cmdbuffer[bufindr], 'N'); strchr_pointer = strchr(npos,' ') + 1; *(starpos-1) = '\0'; } - if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) + + if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) { - Serial.print("open failed, File: "); - Serial.print(strchr_pointer + 4); - Serial.print("."); - }else{ - savetosd = true; - Serial.print("Writing to file: "); - Serial.println(strchr_pointer + 4); + showString(PSTR("open failed, File: ")); + Serial.print(strchr_pointer + 4); + showString(PSTR(".")); + } + else + { + savetosd = true; + showString(PSTR("Writing to file: ")); + Serial.println(strchr_pointer + 4); } } break; @@ -849,13 +1161,38 @@ inline void process_commands() //processed in write to file routine above //savetosd = false; break; - case 30: //M30 - fast SD transfer + #ifndef SD_FAST_XFER_AKTIV + case 30: // M30 filename - Delete file + if(sdactive) + { + sdmode = false; + file.close(); + + starpos = (strchr(strchr_pointer + 4,'*')); + + if(starpos!=NULL) + *(starpos-1)='\0'; + + if(file.remove(&root, strchr_pointer + 4)) + { + showString(PSTR("File deleted\r\n")); + } + else + { + showString(PSTR("Deletion failed\r\n")); + } + } + break; + #else + case 30: //M30 - fast SD transfer fast_xfer(); break; case 31: //M31 - high speed xfer capabilities - Serial.print("RAW:"); + showString(PSTR("RAW:")); Serial.println(SD_FAST_XFER_CHUNK_SIZE); break; + #endif + #endif case 42: //M42 -Change pin status via gcode if (code_seen('S')) @@ -877,7 +1214,7 @@ inline void process_commands() { pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); - analogWrite(pin_number, pin_status); + //analogWrite(pin_number, pin_status); } } } @@ -885,10 +1222,13 @@ inline void process_commands() case 104: // M104 if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value()); #ifdef WATCHPERIOD - if(target_raw > current_raw){ + if(target_raw > current_raw) + { watchmillis = max(1,millis()); watch_raw = current_raw; - }else{ + } + else + { watchmillis = 0; } #endif @@ -900,23 +1240,31 @@ inline void process_commands() break; case 105: // M105 #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595 - tt = analog2temp(current_raw); + hotendtC = analog2temp(current_raw); #endif #if TEMP_1_PIN > -1 || defined BED_USES_AD595 - bt = analog2tempBed(current_bed_raw); + bedtempC = analog2tempBed(current_bed_raw); #endif #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595 - Serial.print("ok T:"); - Serial.print(tt); + showString(PSTR("ok T:")); + Serial.print(hotendtC); #ifdef PIDTEMP - Serial.print(" @:"); + showString(PSTR(" @:")); Serial.print(heater_duty); - Serial.print(","); + showString(PSTR(",P:")); + Serial.print(pTerm); + showString(PSTR(",I:")); Serial.print(iTerm); + showString(PSTR(",D:")); + Serial.print(dTerm); + #ifdef AUTOTEMP + showString(PSTR(",AU:")); + Serial.print(autotemp_setpoint); + #endif #endif #if TEMP_1_PIN > -1 || defined BED_USES_AD595 - Serial.print(" B:"); - Serial.println(bt); + showString(PSTR(" B:")); + Serial.println(bedtempC); #else Serial.println(); #endif @@ -928,10 +1276,13 @@ inline void process_commands() case 109: { // M109 - Wait for extruder heater to reach target. if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value()); #ifdef WATCHPERIOD - if(target_raw>current_raw){ + if(target_raw>current_raw) + { watchmillis = max(1,millis()); watch_raw = current_raw; - }else{ + } + else + { watchmillis = 0; } #endif @@ -952,7 +1303,7 @@ inline void process_commands() #endif if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down { - Serial.print("T:"); + showString(PSTR("T:")); Serial.println( analog2temp(current_raw) ); codenum = millis(); } @@ -973,33 +1324,36 @@ inline void process_commands() #if TEMP_1_PIN > -1 if (code_seen('S')) target_bed_raw = temp2analogBed(code_value()); codenum = millis(); - while(current_bed_raw < target_bed_raw) { + while(current_bed_raw < target_bed_raw) + { if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. { - tt=analog2temp(current_raw); - Serial.print("T:"); - Serial.print( tt ); - Serial.print(" B:"); - Serial.println(analog2tempBed(current_bed_raw)); + hotendtC=analog2temp(current_raw); + showString(PSTR("T:")); + Serial.print( hotendtC ); + showString(PSTR(" B:")); + Serial.println( analog2tempBed(current_bed_raw) ); codenum = millis(); } - manage_heater(); + manage_heater(); } #endif break; #if FAN_PIN > -1 case 106: //M106 Fan On - if (code_seen('S')){ + if (code_seen('S')) + { WRITE(FAN_PIN, HIGH); - analogWrite(FAN_PIN, constrain(code_value(),0,255) ); + //analogWrite(FAN_PIN, constrain(code_value(),0,255) ); } - else { + else + { WRITE(FAN_PIN, HIGH); - analogWrite(FAN_PIN, 255 ); + //analogWrite(FAN_PIN, 255 ); } break; case 107: //M107 Fan Off - analogWrite(FAN_PIN, 0); + //analogWrite(FAN_PIN, 0); WRITE(FAN_PIN, LOW); break; #endif @@ -1018,82 +1372,153 @@ inline void process_commands() axis_relative_modes[3] = true; break; case 84: - if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; } - else{ disable_x(); disable_y(); disable_z(); disable_e(); } + st_synchronize(); // wait for all movements to finish + if(code_seen('S')) + { + stepper_inactive_time = code_value() * 1000; + } + else + { + disable_x(); + disable_y(); + disable_z(); + disable_e(); + } break; case 85: // M85 code_seen('S'); max_inactive_time = code_value() * 1000; break; case 92: // M92 - for(int i=0; i < NUM_AXIS; i++) { + for(int i=0; i < NUM_AXIS; i++) + { if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value(); } + //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it + // should also be used in setup() as well #ifdef RAMP_ACCELERATION - setup_acceleration(); + long temp_max_intervals[NUM_AXIS]; + for(int i=0; i < NUM_AXIS; i++) + { + axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for + // all steps_per_unit related variables + } #endif - break; case 115: // M115 - Serial.print("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1 UUID:"); - Serial.println(uuid); + showString(PSTR("FIRMWARE_NAME: SprinterV2 PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n")); + //Serial.println(uuid); + showString(PSTR(_DEF_CHAR_UUID)); + showString(PSTR("\r\n")); break; case 114: // M114 - Serial.print("X:"); + showString(PSTR("X:")); Serial.print(current_position[0]); - Serial.print("Y:"); + showString(PSTR("Y:")); Serial.print(current_position[1]); - Serial.print("Z:"); + showString(PSTR("Z:")); Serial.print(current_position[2]); - Serial.print("E:"); + showString(PSTR("E:")); Serial.println(current_position[3]); break; case 119: // M119 + #if (X_MIN_PIN > -1) - Serial.print("x_min:"); - Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L "); + showString(PSTR("x_min:")); + Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L "); #endif #if (X_MAX_PIN > -1) - Serial.print("x_max:"); - Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L "); + showString(PSTR("x_max:")); + Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Y_MIN_PIN > -1) - Serial.print("y_min:"); - Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L "); + showString(PSTR("y_min:")); + Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Y_MAX_PIN > -1) - Serial.print("y_max:"); - Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L "); + showString(PSTR("y_max:")); + Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Z_MIN_PIN > -1) - Serial.print("z_min:"); - Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L "); + showString(PSTR("z_min:")); + Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L "); #endif #if (Z_MAX_PIN > -1) - Serial.print("z_max:"); - Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L "); + showString(PSTR("z_max:")); + Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L "); #endif - Serial.println(""); + + showString(PSTR("\r\n")); break; #ifdef RAMP_ACCELERATION //TODO: update for all axis, use for loop case 201: // M201 - for(int i=0; i < NUM_AXIS; i++) { + for(int i=0; i < NUM_AXIS; i++) + { if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; case 202: // M202 - for(int i=0; i < NUM_AXIS; i++) { + for(int i=0; i < NUM_AXIS; i++) + { if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } break; #endif + case 203: // M203 Temperature monitor + if(code_seen('S')) manage_monitor = code_value(); + if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed + break; + case 220: // M220 S<factor in percent>- set speed factor override percentage + { + if(code_seen('S')) + { + feedmultiply = code_value() ; + if(feedmultiply < 20) feedmultiply = 20; + if(feedmultiply > 200) feedmultiply = 200; + feedmultiplychanged=true; + } + } + break; +#ifdef DEBUG_HEATER_TEMP + case 601: // M601 show Extruder Temp jitter + #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595 + if(current_raw_maxval > 0) + tt_maxval = analog2temp(current_raw_maxval); + if(current_raw_minval < 10000) + tt_minval = analog2temp(current_raw_minval); + #endif + + showString(PSTR("Tmin:")); + Serial.print(tt_minval); + showString(PSTR(" / Tmax:")); + Serial.print(tt_maxval); + showString(PSTR(" ")); + break; + case 602: // M602 reset Extruder Temp jitter + current_raw_minval = 32000; + current_raw_maxval = -32000; + + showString(PSTR("T Minmax Reset ")); + break; +#endif + case 603: // M603 Free RAM + showString(PSTR("Free Ram: ")); + Serial.println(FreeRam1()); + break; + default: + #ifdef SEND_WRONG_CMD_INFO + showString(PSTR("Unknown M-COM:")); + Serial.println(cmdbuffer[bufindr]); + #endif + break; + } } else{ - Serial.println("Unknown command:"); + showString(PSTR("Unknown command:\r\n")); Serial.println(cmdbuffer[bufindr]); } @@ -1101,11 +1526,13 @@ inline void process_commands() } + + void FlushSerialRequestResend() { //char cmdbuffer[bufindr][100]="Resend:"; Serial.flush(); - Serial.print("Resend:"); + showString(PSTR("Resend:")); Serial.println(gcode_LastN + 1); ClearToSend(); } @@ -1117,782 +1544,1093 @@ void ClearToSend() if(fromsd[bufindr]) return; #endif - Serial.println("ok"); + showString(PSTR("ok\r\n")); + //Serial.println("ok"); } inline void get_coordinates() { - for(int i=0; i < NUM_AXIS; i++) { + for(int i=0; i < NUM_AXIS; i++) + { if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; else destination[i] = current_position[i]; //Are these else lines really needed? } - if(code_seen('F')) { + + if(code_seen('F')) + { next_feedrate = code_value(); if(next_feedrate > 0.0) feedrate = next_feedrate; } } +inline void get_arc_coordinates() +{ + get_coordinates(); + if(code_seen('I')) offset[0] = code_value(); + if(code_seen('J')) offset[1] = code_value(); +} + + void prepare_move() { - //Find direction - for(int i=0; i < NUM_AXIS; i++) { - if(destination[i] >= current_position[i]) move_direction[i] = 1; - else move_direction[i] = 0; + long help_feedrate = 0; + + if (min_software_endstops) + { + if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0; + if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0; + if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0; } + + if (max_software_endstops) + { + if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH; + if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH; + if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH; + } + + help_feedrate = ((long)feedrate*(long)feedmultiply); + plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0); + + for(int i=0; i < NUM_AXIS; i++) + { + current_position[i] = destination[i]; + } +} + + + +void prepare_arc_move(char isclockwise) +{ + + float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc + long help_feedrate = 0; + + help_feedrate = ((long)feedrate*(long)feedmultiply); + // Trace the arc + mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise); - if (min_software_endstops) { - if (destination[0] < 0) destination[0] = 0.0; - if (destination[1] < 0) destination[1] = 0.0; - if (destination[2] < 0) destination[2] = 0.0; + // As far as the parser is concerned, the position is now == target. In reality the + // motion control system might still be processing the action and the real tool position + // in any intermediate location. + for(int8_t i=0; i < NUM_AXIS; i++) + { + current_position[i] = destination[i]; } +} + - if (max_software_endstops) { - if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH; - if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH; - if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH; +inline void kill() +{ + #if TEMP_0_PIN > -1 + target_raw=0; + WRITE(HEATER_0_PIN,LOW); + #endif + + #if TEMP_1_PIN > -1 + target_bed_raw=0; + if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW); + #endif + + disable_x(); + disable_y(); + disable_z(); + disable_e(); + + if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); + +} + +inline void manage_inactivity(byte debug) +{ + if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); + + if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) + { + disable_x(); + disable_y(); + disable_z(); + disable_e(); + } + check_axes_activity(); +} + + + + +// Planner with Interrupt for Stepper + +/* + Reasoning behind the mathematics in this module (in the key of 'Mathematica'): + + s == speed, a == acceleration, t == time, d == distance + + Basic definitions: + + Speed[s_, a_, t_] := s + (a*t) + Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] + + Distance to reach a specific speed with a constant acceleration: + + Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] + d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() + + Speed after a given distance of travel with constant acceleration: + + Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] + m -> Sqrt[2 a d + s^2] + + DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] + + When to start braking (di) to reach a specified destionation speed (s2) after accelerating + from initial speed s1 without ever stopping at a plateau: + + Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] + di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() + + IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) + */ + + +static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions +static volatile unsigned char block_buffer_head; // Index of the next block to be pushed +static volatile unsigned char block_buffer_tail; // Index of the block to process now + +// The current position of the tool in absolute steps +static long position[4]; + +#define ONE_MINUTE_OF_MICROSECONDS 60000000.0 + +// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the +// given acceleration: +inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) +{ + return( + (target_rate*target_rate-initial_rate*initial_rate)/ + (2L*acceleration) + ); +} + +// This function gives you the point at which you must start braking (at the rate of -acceleration) if +// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after +// a total travel of distance. This can be used to compute the intersection point between acceleration and +// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) + +inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) +{ + return( + (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ + (4*acceleration) + ); +} + +// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. + +void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) +{ + if(block->busy == true) return; // If block is busy then bail out. + float entry_factor = entry_speed / block->nominal_speed; + float exit_factor = exit_speed / block->nominal_speed; + long initial_rate = ceil(block->nominal_rate*entry_factor); + long final_rate = ceil(block->nominal_rate*exit_factor); +#ifdef ADVANCE + long initial_advance = block->advance*entry_factor*entry_factor; + long final_advance = block->advance*exit_factor*exit_factor; +#endif // ADVANCE + + // Limit minimal step rate (Otherwise the timer will overflow.) + if(initial_rate <120) initial_rate=120; + if(final_rate < 120) final_rate=120; + + // Calculate the acceleration steps + long acceleration = block->acceleration_st; + long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration); + long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration); + // Calculate the size of Plateau of Nominal Rate. + long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; + + // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will + // have to use intersection_distance() to calculate when to abort acceleration and start braking + // in order to reach the final_rate exactly at the end of this block. + if (plateau_steps < 0) { + accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count); + plateau_steps = 0; + } + + long decelerate_after = accelerate_steps+plateau_steps; + long acceleration_rate = (long)((float)acceleration * 8.388608); + + CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section + if(block->busy == false) { // Don't update variables if block is busy. + block->accelerate_until = accelerate_steps; + block->decelerate_after = decelerate_after; + block->acceleration_rate = acceleration_rate; + block->initial_rate = initial_rate; + block->final_rate = final_rate; +#ifdef ADVANCE + block->initial_advance = initial_advance; + block->final_advance = final_advance; +#endif ADVANCE } + CRITICAL_SECTION_END; +} + +// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the +// acceleration within the allotted distance. +inline float max_allowable_speed(float acceleration, float target_velocity, float distance) { + return( + sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance) + ); +} + +// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. +// This method will calculate the junction jerk as the euclidean distance between the nominal +// velocities of the respective blocks. +inline float junction_jerk(block_t *before, block_t *after) { + return(sqrt( + pow((before->speed_x-after->speed_x), 2)+ + pow((before->speed_y-after->speed_y), 2))); +} - for(int i=0; i < NUM_AXIS; i++) { - axis_diff[i] = destination[i] - current_position[i]; - move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i]; +// Return the safe speed which is max_jerk/2, e.g. the +// speed under which you cannot exceed max_jerk no matter what you do. +float safe_speed(block_t *block) { + float safe_speed; + safe_speed = max_xy_jerk/2; + if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2; + if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed; + return safe_speed; +} + +// The kernel called by planner_recalculate() when scanning the plan from last to first entry. +void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { + if(!current) { + return; } - if(feedrate < 10) - feedrate = 10; - - //Feedrate calc based on XYZ travel distance - float xy_d; - //Check for cases where only one axis is moving - handle those without float sqrt - if(abs(axis_diff[0]) > 0 && abs(axis_diff[1]) == 0 && abs(axis_diff[2])==0) - d=abs(axis_diff[0]); - else if(abs(axis_diff[0]) == 0 && abs(axis_diff[1]) > 0 && abs(axis_diff[2])==0) - d=abs(axis_diff[1]); - else if(abs(axis_diff[0]) == 0 && abs(axis_diff[1]) == 0 && abs(axis_diff[2])>0) - d=abs(axis_diff[2]); - //two or three XYZ axes moving - else if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0) { //X or Y or both - xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]); - //check if Z involved - if so interpolate that too - d = (abs(axis_diff[2])>0)?sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]):xy_d; + + float entry_speed = current->nominal_speed; + float exit_factor; + float exit_speed; + if (next) { + exit_speed = next->entry_speed; + } + else { + exit_speed = safe_speed(current); } - else if(abs(axis_diff[3]) > 0) - d = abs(axis_diff[3]); - else{ //zero length move - #ifdef DEBUG_PREPARE_MOVE - - log_message("_PREPARE_MOVE - No steps to take!"); - - #endif - return; + + // Calculate the entry_factor for the current block. + if (previous) { + // Reduce speed so that junction_jerk is within the maximum allowed + float jerk = junction_jerk(previous, current); + if((previous->steps_x == 0) && (previous->steps_y == 0)) { + entry_speed = safe_speed(current); } - time_for_move = (d / (feedrate / 60000000.0) ); - //Check max feedrate for each axis is not violated, update time_for_move if necessary - for(int i = 0; i < NUM_AXIS; i++) { - if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) { - time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0)); + else if (jerk > max_xy_jerk) { + entry_speed = (max_xy_jerk/jerk) * entry_speed; + } + if(abs(previous->speed_z - current->speed_z) > max_z_jerk) { + entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed; } + // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly. + if (entry_speed > exit_speed) { + float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters); + if (max_entry_speed < entry_speed) { + entry_speed = max_entry_speed; + } + } + } + else { + entry_speed = safe_speed(current); } + // Store result + current->entry_speed = entry_speed; +} -#ifdef RAPID_OSCILLATION_REDUCTION //VERBOSE commenting for peer review. tested on multiple prints--works! - for(int i=0; i < NUM_AXIS-1; i++) { //do for each axis, except for extruder (refer to the -1 value) - if(prev_move_direction[i] != move_direction[i]){ //check if we've changed direcitons - osc_wait_remainder=min_time_before_dir_change; //if we changed directions, then shit the bed! We better make sure to wait & chill out time before jerkin' over in the opposite direction! - if(cumm_wait_time_in_dir[i]<min_time_before_dir_change){ //if so, check if we've sat @ the current position long enough for this axis - if((min_time_before_dir_change-cumm_wait_time_in_dir[i])>osc_wait_remainder){ //if not, dont overwrite the remaining wait time if we already have to wait LONGER for a different axis - osc_wait_remainder=min_time_before_dir_change-cumm_wait_time_in_dir[i]; - } - } - cumm_wait_time_in_dir[i] = 0.0; //we've changed directions! now that we've either set a wait period, or we had already waited long enough after a direction change, let's reset our wait variable for this axis - } - else{ //we haven't changed directions! so, lets make sure to increase our wait time for the time we have not been moving back on the same axis - if(cumm_wait_time_in_dir[i]==0.0){ - cumm_wait_time_in_dir[i] = 0.001; //if the cumm wait variable = 0.0, that means we've just completed our first move after a dir change. we really haven't waited at all. so, let's increment the wait value insignifcant value so that we may proceed, but not hit this line again. - } - else{ - //Serial.print("It is will take [ESTIMATED] this many seconds to perform this move:"); Serial.println(time_for_move/1000000); - cumm_wait_time_in_dir[i] = cumm_wait_time_in_dir[i] + time_for_move/1000; //increment the time we've waited in this axis - } +// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This +// implements the reverse pass. +void planner_reverse_pass() { + char block_index = block_buffer_head; + block_t *block[3] = { NULL, NULL, NULL }; + while(block_index != block_buffer_tail) { + block_index--; + if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1; + block[2]= block[1]; + block[1]= block[0]; + block[0] = &block_buffer[block_index]; + planner_reverse_pass_kernel(block[0], block[1], block[2]); + } + planner_reverse_pass_kernel(NULL, block[0], block[1]); +} + +// The kernel called by planner_recalculate() when scanning the plan from first to last entry. +void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { + if(!current) { + return; + } + if(previous) { + // If the previous block is an acceleration block, but it is not long enough to + // complete the full speed change within the block, we need to adjust out entry + // speed accordingly. Remember current->entry_factor equals the exit factor of + // the previous block. + if(previous->entry_speed < current->entry_speed) { + float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters); + if (max_entry_speed < current->entry_speed) { + current->entry_speed = max_entry_speed; } } + } +} - //update prev_moves for next move. again, excluded extruder - for(int i=0; i < NUM_AXIS-1; i++) { - prev_move_direction[i]=move_direction[i]; - } +// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This +// implements the forward pass. +void planner_forward_pass() { + char block_index = block_buffer_tail; + block_t *block[3] = { + NULL, NULL, NULL }; + + while(block_index != block_buffer_head) { + block[0] = block[1]; + block[1] = block[2]; + block[2] = &block_buffer[block_index]; + planner_forward_pass_kernel(block[0],block[1],block[2]); + block_index = (block_index+1) & BLOCK_BUFFER_MASK; + } + planner_forward_pass_kernel(block[1], block[2], NULL); +} - //now WAIT if you are oscillating back & forth too fast in any given axis - if(osc_wait_remainder>0.0){ - delay(osc_wait_remainder); - osc_wait_remainder=0.0; +// Recalculates the trapezoid speed profiles for all blocks in the plan according to the +// entry_factor for each junction. Must be called by planner_recalculate() after +// updating the blocks. +void planner_recalculate_trapezoids() { + char block_index = block_buffer_tail; + block_t *current; + block_t *next = NULL; + while(block_index != block_buffer_head) { + current = next; + next = &block_buffer[block_index]; + if (current) { + calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed); } -#endif + block_index = (block_index+1) & BLOCK_BUFFER_MASK; + } + calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next)); +} + +// Recalculates the motion plan according to the following algorithm: +// +// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) +// so that: +// a. The junction jerk is within the set limit +// b. No speed reduction within one block requires faster deceleration than the one, true constant +// acceleration. +// 2. Go over every block in chronological order and dial down junction speed reduction values if +// a. The speed increase within one block would require faster accelleration than the one, true +// constant acceleration. +// +// When these stages are complete all blocks have an entry_factor that will allow all speed changes to +// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than +// the set limit. Finally it will: +// +// 3. Recalculate trapezoids for all blocks. + +void planner_recalculate() { + planner_reverse_pass(); + planner_forward_pass(); + planner_recalculate_trapezoids(); +} - //Calculate the full speed stepper interval for each axis - for(int i=0; i < NUM_AXIS; i++) { - if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100; +void plan_init() { + block_buffer_head = 0; + block_buffer_tail = 0; + memset(position, 0, sizeof(position)); // clear position +} + + +inline void plan_discard_current_block() { + if (block_buffer_head != block_buffer_tail) { + block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK; } +} - #ifdef DEBUG_PREPARE_MOVE - log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d); - log_float("_PREPARE_MOVE - Move distance on the XYZ space", d); - log_int("_PREPARE_MOVE - Commanded feedrate", feedrate); - log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move); - log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS); - log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS); - log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS); - log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS); - #endif +inline block_t *plan_get_current_block() { + if (block_buffer_head == block_buffer_tail) { + return(NULL); + } + block_t *block = &block_buffer[block_buffer_tail]; + block->busy = true; + return(block); +} - unsigned long move_steps[NUM_AXIS]; - for(int i=0; i < NUM_AXIS; i++) - move_steps[i] = move_steps_to_take[i]; - linear_move(move_steps); // make the move +void check_axes_activity() { + unsigned char x_active = 0; + unsigned char y_active = 0; + unsigned char z_active = 0; + unsigned char e_active = 0; + block_t *block; + + if(block_buffer_tail != block_buffer_head) { + char block_index = block_buffer_tail; + while(block_index != block_buffer_head) { + block = &block_buffer[block_index]; + if(block->steps_x != 0) x_active++; + if(block->steps_y != 0) y_active++; + if(block->steps_z != 0) z_active++; + if(block->steps_e != 0) e_active++; + block_index = (block_index+1) & BLOCK_BUFFER_MASK; + } + } + if((DISABLE_X) && (x_active == 0)) disable_x(); + if((DISABLE_Y) && (y_active == 0)) disable_y(); + if((DISABLE_Z) && (z_active == 0)) disable_z(); + if((DISABLE_E) && (e_active == 0)) disable_e(); } -inline void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1 -{ - //Determine direction of movement - if (destination[0] > current_position[0]) WRITE(X_DIR_PIN,!INVERT_X_DIR); - else WRITE(X_DIR_PIN,INVERT_X_DIR); - if (destination[1] > current_position[1]) WRITE(Y_DIR_PIN,!INVERT_Y_DIR); - else WRITE(Y_DIR_PIN,INVERT_Y_DIR); - if (destination[2] > current_position[2]) WRITE(Z_DIR_PIN,!INVERT_Z_DIR); - else WRITE(Z_DIR_PIN,INVERT_Z_DIR); - if (destination[3] > current_position[3]) WRITE(E_DIR_PIN,!INVERT_E_DIR); - else WRITE(E_DIR_PIN,INVERT_E_DIR); - movereset: - #if (X_MIN_PIN > -1) - if(!move_direction[0]) if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) axis_steps_remaining[0]=0; - #endif - #if (Y_MIN_PIN > -1) - if(!move_direction[1]) if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) axis_steps_remaining[1]=0; - #endif - #if (Z_MIN_PIN > -1) - if(!move_direction[2]) if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) axis_steps_remaining[2]=0; - #endif - #if (X_MAX_PIN > -1) - if(move_direction[0]) if(READ(X_MAX_PIN) != X_ENDSTOP_INVERT) axis_steps_remaining[0]=0; - #endif - #if (Y_MAX_PIN > -1) - if(move_direction[1]) if(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT) axis_steps_remaining[1]=0; - #endif - # if(Z_MAX_PIN > -1) - if(move_direction[2]) if(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT) axis_steps_remaining[2]=0; - #endif +// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in +// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration +// calculation the caller must also provide the physical length of the line in millimeters. +void plan_buffer_line(float x, float y, float z, float e, float feed_rate) { + + // The target position of the tool in absolute steps + // Calculate target position in absolute steps + long target[4]; + target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); + target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); + target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); + target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); + + // Calculate the buffer head after we push this byte + int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK; + + // If the buffer is full: good! That means we are well ahead of the robot. + // Rest here until there is room in the buffer. + while(block_buffer_tail == next_buffer_head) { + manage_heater(); + manage_inactivity(1); + } + + //showString(PSTR("X:")); + //Serial.print(x); + //showString(PSTR(" Y:")); + //Serial.println(y); + + // Prepare to set up new block + block_t *block = &block_buffer[block_buffer_head]; + // Mark block as not busy (Not executed by the stepper interrupt) + block->busy = false; + + // Number of steps for each axis + block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); + block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); + block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); + block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); + block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); + + // Bail if this is a zero-length block + if (block->step_event_count == 0) { + return; + }; - //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration. - // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram, - // but will reduce code size -#ifdef DELAY_ENABLE - if(axis_steps_remaining[0]) + + #ifdef DELAY_ENABLE + if(block->steps_x != 0) { enable_x(); delayMicroseconds(DELAY_ENABLE); } - if(axis_steps_remaining[1]) + if(block->steps_y != 0) { enable_y(); delayMicroseconds(DELAY_ENABLE); } - if(axis_steps_remaining[2]) + if(if(block->steps_z != 0)) { enable_z(); delayMicroseconds(DELAY_ENABLE); } - if(axis_steps_remaining[3]) + if(if(block->steps_e != 0)) { enable_e(); delayMicroseconds(DELAY_ENABLE); } -#else - if(axis_steps_remaining[0]) enable_x(); - if(axis_steps_remaining[1]) enable_y(); - if(axis_steps_remaining[2]) enable_z(); - if(axis_steps_remaining[3]) enable_e(); -#endif - - //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm. - unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes - long axis_error[NUM_AXIS]; - int primary_axis; - if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1; - else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0; - else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2; - else primary_axis = 3; - unsigned long steps_remaining = delta[primary_axis]; - unsigned long steps_to_take = steps_remaining; - for(int i=0; i < NUM_AXIS; i++){ - if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2; - steps_taken[i]=0; - } - interval = axis_interval[primary_axis]; - bool is_print_move = delta[3] > 0; - #ifdef DEBUG_BRESENHAM - log_int("_BRESENHAM - Primary axis", primary_axis); - log_int("_BRESENHAM - Primary axis full speed interval", interval); - log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS); - log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS); - #endif - - //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it. - #ifdef RAMP_ACCELERATION - long max_speed_steps_per_second; - long min_speed_steps_per_second; - max_interval = axis_max_interval[primary_axis]; - #ifdef DEBUG_RAMP_ACCELERATION - log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS); - #endif - unsigned long new_axis_max_intervals[NUM_AXIS]; - max_speed_steps_per_second = 100000000 / interval; - min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted? - //Calculate start speeds based on moving axes max start speed constraints. - int slowest_start_axis = primary_axis; - unsigned long slowest_start_axis_max_interval = max_interval; - for(int i = 0; i < NUM_AXIS; i++) - if (axis_steps_remaining[i] >0 && - i != primary_axis && - axis_max_interval[i] * axis_steps_remaining[i]/ axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) { - slowest_start_axis = i; - slowest_start_axis_max_interval = axis_max_interval[i]; - } - for(int i = 0; i < NUM_AXIS; i++) - if(axis_steps_remaining[i] >0) { - // multiplying slowest_start_axis_max_interval by axis_steps_remaining[slowest_start_axis] - // could lead to overflows when we have long distance moves (say, 390625*390625 > sizeof(unsigned long)) - float steps_remaining_ratio = (float) axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i]; - new_axis_max_intervals[i] = slowest_start_axis_max_interval * steps_remaining_ratio; - - if(i == primary_axis) { - max_interval = new_axis_max_intervals[i]; - min_speed_steps_per_second = 100000000 / max_interval; - } - } - //Calculate slowest axis plateau time - float slowest_axis_plateau_time = 0; - for(int i=0; i < NUM_AXIS ; i++) { - if(axis_steps_remaining[i] > 0) { - if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, - (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]); - else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, - (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]); - } - } - //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated - steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time; - plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time); - #ifdef DEBUG_RAMP_ACCELERATION - log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis); - log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval); - log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS); - #endif - #endif + #else + //enable active axes + if(block->steps_x != 0) enable_x(); + if(block->steps_y != 0) enable_y(); + if(block->steps_z != 0) enable_z(); + if(block->steps_e != 0) enable_e(); + #endif + + float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; + float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; + float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; + float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS]; + block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm)); + + unsigned long microseconds; + microseconds = lround((block->millimeters/feed_rate)*1000000); - unsigned long steps_done = 0; - #ifdef RAMP_ACCELERATION - plateau_steps *= 1.01; // This is to compensate we use discrete intervals - acceleration_enabled = true; - unsigned long full_interval = interval; - if(interval > max_interval) acceleration_enabled = false; - boolean decelerating = false; - #endif - - unsigned long start_move_micros = micros(); - for(int i = 0; i < NUM_AXIS; i++) { - axis_previous_micros[i] = start_move_micros * 100; + // Calculate speed in mm/minute for each axis + float multiplier = 60.0*1000000.0/microseconds; + block->speed_z = delta_z_mm * multiplier; + block->speed_x = delta_x_mm * multiplier; + block->speed_y = delta_y_mm * multiplier; + block->speed_e = delta_e_mm * multiplier; + + // Limit speed per axis + float speed_factor = 1; + float tmp_speed_factor; + if(abs(block->speed_x) > max_feedrate[X_AXIS]) { + speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x); } - - #ifdef DISABLE_CHECK_DURING_TRAVEL - //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's - // consider this a print move and perform heat management during it - if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true; - //else, if the move is a retract, consider it as a travel move for the sake of this feature - else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false; - #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL - log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move); - #endif - #endif - - #ifdef DEBUG_MOVE_TIME - unsigned long startmove = micros(); - #endif + if(abs(block->speed_y) > max_feedrate[Y_AXIS]){ + tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y); + if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; + } + if(abs(block->speed_z) > max_feedrate[Z_AXIS]){ + tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z); + if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; + } + if(abs(block->speed_e) > max_feedrate[E_AXIS]){ + tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e); + if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; + } + multiplier = multiplier * speed_factor; + block->speed_z = delta_z_mm * multiplier; + block->speed_x = delta_x_mm * multiplier; + block->speed_y = delta_y_mm * multiplier; + block->speed_e = delta_e_mm * multiplier; + block->nominal_speed = block->millimeters * multiplier; + block->nominal_rate = ceil(block->step_event_count * multiplier / 60); - //move until no more steps remain - while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) { - #if defined RAMP_ACCELERATION && defined DISABLE_CHECK_DURING_ACC - if(!accelerating && !decelerating) { - //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp - #ifdef DISABLE_CHECK_DURING_TRAVEL - if(is_print_move) - #endif - manage_heater(); - } - #else - #ifdef DISABLE_CHECK_DURING_MOVE - {} //Do nothing - #else - //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp - #ifdef DISABLE_CHECK_DURING_TRAVEL - if(is_print_move) - #endif - manage_heater(); - #endif - #endif - #ifdef RAMP_ACCELERATION - //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval - if (acceleration_enabled && steps_done == 0) { - interval = max_interval; - } else if (acceleration_enabled && steps_done <= plateau_steps) { - long current_speed = (long) ((((long) steps_per_sqr_second) / 100) - * ((micros() - start_move_micros) / 100)/100 + (long) min_speed_steps_per_second); - interval = 100000000 / current_speed; - if (interval < full_interval) { - accelerating = false; - interval = full_interval; - } - if (steps_done >= steps_to_take / 2) { - plateau_steps = steps_done; - max_speed_steps_per_second = 100000000 / interval; - accelerating = false; - } - } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) { - if (!accelerating) { - start_move_micros = micros(); - accelerating = true; - decelerating = true; - } - long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 100) - * ((micros() - start_move_micros) / 100)/100)); - interval = 100000000 / current_speed; - if (interval > max_interval) - interval = max_interval; - } else { - //Else, we are just use the full speed interval as current interval - interval = full_interval; - accelerating = false; - } - #endif + if(block->nominal_rate < 120) block->nominal_rate = 120; + block->entry_speed = safe_speed(block); - //If there are x or y steps remaining, perform Bresenham algorithm - if(axis_steps_remaining[primary_axis]) { - #if (X_MIN_PIN > -1) - if(!move_direction[0]) if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) if(primary_axis==0) break; else if(axis_steps_remaining[0]) axis_steps_remaining[0]=0; - #endif - #if (Y_MIN_PIN > -1) - if(!move_direction[1]) if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) if(primary_axis==1) break; else if(axis_steps_remaining[1]) axis_steps_remaining[1]=0; - #endif - #if (X_MAX_PIN > -1) - if(move_direction[0]) if(READ(X_MAX_PIN) != X_ENDSTOP_INVERT) if(primary_axis==0) break; else if(axis_steps_remaining[0]) axis_steps_remaining[0]=0; - #endif - #if (Y_MAX_PIN > -1) - if(move_direction[1]) if(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT) if(primary_axis==1) break; else if(axis_steps_remaining[1]) axis_steps_remaining[1]=0; - #endif - #if (Z_MIN_PIN > -1) - if(!move_direction[2]) if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) if(primary_axis==2) break; else if(axis_steps_remaining[2]) axis_steps_remaining[2]=0; - #endif - #if (Z_MAX_PIN > -1) - if(move_direction[2]) if(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT) if(primary_axis==2) break; else if(axis_steps_remaining[2]) axis_steps_remaining[2]=0; - #endif - timediff = micros() * 100 - axis_previous_micros[primary_axis]; - if(timediff<0){//check for overflow - axis_previous_micros[primary_axis]=micros()*100; - timediff=interval/2; //approximation - } - while(((unsigned long)timediff) >= interval && axis_steps_remaining[primary_axis] > 0) { - steps_done++; - steps_remaining--; - axis_steps_remaining[primary_axis]--; timediff -= interval; - do_step(primary_axis); - axis_previous_micros[primary_axis] += interval; - for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) { - axis_error[i] = axis_error[i] - delta[i]; - if(axis_error[i] < 0) { - do_step(i); axis_steps_remaining[i]--; - axis_error[i] = axis_error[i] + delta[primary_axis]; - } - } - #ifdef STEP_DELAY_RATIO - if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000); - #endif - #ifdef STEP_DELAY_MICROS - if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS); - #endif - } - } + // Compute the acceleration rate for the trapezoid generator. + float travel_per_step = block->millimeters/block->step_event_count; + if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { + block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 } - #ifdef DEBUG_MOVE_TIME - log_ulong("_MOVE_TIME - This move took", micros()-startmove); - #endif - - if(DISABLE_X) disable_x(); - if(DISABLE_Y) disable_y(); - if(DISABLE_Z) disable_z(); - if(DISABLE_E) disable_e(); + else { + block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 + // Limit acceleration per axis + if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) + block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; + if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) + block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; + if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) + block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; + if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS]) + block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; + } + block->acceleration = block->acceleration_st * travel_per_step; - // Update current position partly based on direction, we probably can combine this with the direction code above... - for(int i=0; i < NUM_AXIS; i++) { - if (destination[i] > current_position[i]) current_position[i] = current_position[i] + steps_taken[i] / axis_steps_per_unit[i]; - else current_position[i] = current_position[i] - steps_taken[i] / axis_steps_per_unit[i]; +#ifdef ADVANCE + // Calculate advance rate + if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { + block->advance_rate = 0; + block->advance = 0; + } + else { + long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); + float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * + (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536; + block->advance = advance; + if(acc_dist == 0) { + block->advance_rate = 0; + } + else { + block->advance_rate = advance / (float)acc_dist; + } } -} -void do_step(int axis) { - switch(axis){ - case 0: - WRITE(X_STEP_PIN, HIGH); - break; - case 1: - WRITE(Y_STEP_PIN, HIGH); - break; - case 2: - WRITE(Z_STEP_PIN, HIGH); - break; - case 3: - WRITE(E_STEP_PIN, HIGH); - break; +#endif // ADVANCE + + // compute a preliminary conservative acceleration trapezoid + float safespeed = safe_speed(block); + calculate_trapezoid_for_block(block, safespeed, safespeed); + + // Compute direction bits for this block + block->direction_bits = 0; + if (target[X_AXIS] < position[X_AXIS]) { + block->direction_bits |= (1<<X_AXIS); + } + if (target[Y_AXIS] < position[Y_AXIS]) { + block->direction_bits |= (1<<Y_AXIS); + } + if (target[Z_AXIS] < position[Z_AXIS]) { + block->direction_bits |= (1<<Z_AXIS); + } + if (target[E_AXIS] < position[E_AXIS]) { + block->direction_bits |= (1<<E_AXIS); } - steps_taken[axis]+=1; - WRITE(X_STEP_PIN, LOW); - WRITE(Y_STEP_PIN, LOW); - WRITE(Z_STEP_PIN, LOW); - WRITE(E_STEP_PIN, LOW); -} -#define HEAT_INTERVAL 250 -#ifdef HEATER_USES_MAX6675 -unsigned long max6675_previous_millis = 0; -int max6675_temp = 2000; + // Move buffer head + block_buffer_head = next_buffer_head; -int read_max6675() -{ - if (millis() - max6675_previous_millis < HEAT_INTERVAL) - return max6675_temp; - - max6675_previous_millis = millis(); + // Update position + memcpy(position, target, sizeof(target)); // position[] = target[] - max6675_temp = 0; - - #ifdef PRR - PRR &= ~(1<<PRSPI); - #elif defined PRR0 - PRR0 &= ~(1<<PRSPI); + planner_recalculate(); + #ifdef AUTOTEMP + getHighESpeed(); #endif + st_wake_up(); +} + +void plan_set_position(float x, float y, float z, float e) +{ + position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); + position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); + position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); + position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); +} + +#ifdef AUTOTEMP +void getHighESpeed() +{ + static float oldt=0; + if(!autotemp_enabled) + return; + if((target_temp+2) < autotemp_min) //probably temperature set to zero. + return; //do nothing - SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); - - // enable TT_MAX6675 - WRITE(MAX6675_SS, 0); + float high=0; + uint8_t block_index = block_buffer_tail; - // ensure 100ns delay - a bit extra is fine - delay(1); + while(block_index != block_buffer_head) + { + float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate; + //se; units steps/sec; + if(se>high) + { + high=se; + } + block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); + } + + float t=autotemp_min+high*autotemp_factor; - // read MSB - SPDR = 0; - for (;(SPSR & (1<<SPIF)) == 0;); - max6675_temp = SPDR; - max6675_temp <<= 8; + if(t<autotemp_min) + t=autotemp_min; - // read LSB - SPDR = 0; - for (;(SPSR & (1<<SPIF)) == 0;); - max6675_temp |= SPDR; + if(t>autotemp_max) + t=autotemp_max; - // disable TT_MAX6675 - WRITE(MAX6675_SS, 1); - - if (max6675_temp & 4) + if(oldt>t) { - // thermocouple open - max6675_temp = 2000; - } - else - { - max6675_temp = max6675_temp >> 3; + t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t; } + oldt=t; + autotemp_setpoint = (int)t; - return max6675_temp; } #endif -#ifdef CONTROLLERFAN_PIN -unsigned long lastMotor = 0; //Save the time for when a motor was turned on last -unsigned long lastMotorCheck = 0; -void controllerFan() -{ - if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms - { - lastMotorCheck = millis(); - - if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled... - { - lastMotor = millis(); //... set time to NOW so the fan will turn on - } - - if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... - { - WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off - } - else - { - WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on - } - } + + +// Stepper + +// intRes = intIn1 * intIn2 >> 16 +// uses: +// r26 to store 0 +// r27 to store the byte 1 of the 24 bit result +#define MultiU16X8toH16(intRes, charIn1, intIn2) \ +asm volatile ( \ +"clr r26 \n\t" \ +"mul %A1, %B2 \n\t" \ +"movw %A0, r0 \n\t" \ +"mul %A1, %A2 \n\t" \ +"add %A0, r1 \n\t" \ +"adc %B0, r26 \n\t" \ +"lsr r0 \n\t" \ +"adc %A0, r26 \n\t" \ +"adc %B0, r26 \n\t" \ +"clr r1 \n\t" \ +: \ +"=&r" (intRes) \ +: \ +"d" (charIn1), \ +"d" (intIn2) \ +: \ +"r26" \ +) + +// intRes = longIn1 * longIn2 >> 24 +// uses: +// r26 to store 0 +// r27 to store the byte 1 of the 48bit result +#define MultiU24X24toH16(intRes, longIn1, longIn2) \ +asm volatile ( \ +"clr r26 \n\t" \ +"mul %A1, %B2 \n\t" \ +"mov r27, r1 \n\t" \ +"mul %B1, %C2 \n\t" \ +"movw %A0, r0 \n\t" \ +"mul %C1, %C2 \n\t" \ +"add %B0, r0 \n\t" \ +"mul %C1, %B2 \n\t" \ +"add %A0, r0 \n\t" \ +"adc %B0, r1 \n\t" \ +"mul %A1, %C2 \n\t" \ +"add r27, r0 \n\t" \ +"adc %A0, r1 \n\t" \ +"adc %B0, r26 \n\t" \ +"mul %B1, %B2 \n\t" \ +"add r27, r0 \n\t" \ +"adc %A0, r1 \n\t" \ +"adc %B0, r26 \n\t" \ +"mul %C1, %A2 \n\t" \ +"add r27, r0 \n\t" \ +"adc %A0, r1 \n\t" \ +"adc %B0, r26 \n\t" \ +"mul %B1, %A2 \n\t" \ +"add r27, r1 \n\t" \ +"adc %A0, r26 \n\t" \ +"adc %B0, r26 \n\t" \ +"lsr r27 \n\t" \ +"adc %A0, r26 \n\t" \ +"adc %B0, r26 \n\t" \ +"clr r1 \n\t" \ +: \ +"=&r" (intRes) \ +: \ +"d" (longIn1), \ +"d" (longIn2) \ +: \ +"r26" , "r27" \ +) + +// Some useful constants + +#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) +#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) + +static block_t *current_block; // A pointer to the block currently being traced + +// Variables used by The Stepper Driver Interrupt +static unsigned char out_bits; // The next stepping-bits to be output +static long counter_x, // Counter variables for the bresenham line tracer + counter_y, + counter_z, + counter_e; +static unsigned long step_events_completed; // The number of step events executed in the current block +static long advance_rate, advance, final_advance = 0; +static short old_advance = 0; +static short e_steps; +static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler. +static long acceleration_time, deceleration_time; +static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; +static unsigned short acc_step_rate; // needed for deccelaration start point + + + +// __________________________ +// /| |\ _________________ ^ +// / | | \ /| |\ | +// / | | \ / | | \ s +// / | | | | | \ p +// / | | | | | \ e +// +-----+------------------------+---+--+---------------+----+ e +// | BLOCK 1 | BLOCK 2 | d +// +// time -----> +// +// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates +// first block->accelerate_until step_events_completed, then keeps going at constant speed until +// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. +// The slope of acceleration is calculated with the leib ramp alghorithm. + +void st_wake_up() +{ + // TCNT1 = 0; + ENABLE_STEPPER_DRIVER_INTERRUPT(); } -#endif -void manage_heater() +inline unsigned short calc_timer(unsigned short step_rate) { - if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL ) - return; - previous_millis_heater = millis(); - #ifdef HEATER_USES_THERMISTOR - current_raw = analogRead(TEMP_0_PIN); - #ifdef DEBUG_HEAT_MGMT - log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw); - log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS); - #endif - // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, - // this switches it up so that the reading appears lower than target for the control logic. - current_raw = 1023 - current_raw; - #elif defined HEATER_USES_AD595 - current_raw = analogRead(TEMP_0_PIN); - #elif defined HEATER_USES_MAX6675 - current_raw = read_max6675(); - #endif - #ifdef SMOOTHING - if (!nma) nma = SMOOTHFACTOR * current_raw; - nma = (nma + current_raw) - (nma / SMOOTHFACTOR); - current_raw = nma / SMOOTHFACTOR; - #endif - #ifdef WATCHPERIOD - if(watchmillis && millis() - watchmillis > WATCHPERIOD){ - if(watch_raw + 1 >= current_raw){ - target_temp = target_raw = 0; - WRITE(HEATER_0_PIN,LOW); - analogWrite(HEATER_0_PIN, 0); - #if LED_PIN>-1 - WRITE(LED_PIN,LOW); - #endif - }else{ - watchmillis = 0; - } - } - #endif - #ifdef MINTEMP - if(current_raw <= minttemp) - target_temp = target_raw = 0; - #endif - #ifdef MAXTEMP - if(current_raw >= maxttemp) { - target_temp = target_raw = 0; - #if (ALARM_PIN > -1) - WRITE(ALARM_PIN,HIGH); - #endif - } - #endif - #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595) - #ifdef PIDTEMP - int current_temp = analog2temp(current_raw); - error = target_temp - current_temp; - int delta_temp = current_temp - prev_temp; - prev_temp = current_temp; - pTerm = ((long)PID_PGAIN * error) / 256; - const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT); - heater_duty = H0 + pTerm; - if(error < 20){ - temp_iState += error; - temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max); - iTerm = ((long)PID_IGAIN * temp_iState) / 256; - heater_duty += iTerm; - } - int prev_error = abs(target_temp - prev_temp); - int log3 = 1; // discrete logarithm base 3, plus 1 - if(prev_error > 81){ prev_error /= 81; log3 += 4; } - if(prev_error > 9){ prev_error /= 9; log3 += 2; } - if(prev_error > 3){ prev_error /= 3; log3 ++; } - dTerm = ((long)PID_DGAIN * delta_temp) / (256*log3); - heater_duty += dTerm; - heater_duty = constrain(heater_duty, 0, HEATER_CURRENT); - analogWrite(HEATER_0_PIN, heater_duty); - #if LED_PIN>-1 - analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255)); - #endif - #else - if(current_raw >= target_raw) - { - WRITE(HEATER_0_PIN,LOW); - analogWrite(HEATER_0_PIN, 0); - #if LED_PIN>-1 - WRITE(LED_PIN,LOW); - #endif - } - else - { - WRITE(HEATER_0_PIN,HIGH); - analogWrite(HEATER_0_PIN, HEATER_CURRENT); - #if LED_PIN > -1 - WRITE(LED_PIN,HIGH); - #endif - } - #endif - #endif - - if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) - return; - previous_millis_bed_heater = millis(); - #ifndef TEMP_1_PIN - return; - #endif - #if TEMP_1_PIN == -1 - return; - #else + unsigned short timer; + if(step_rate < 32) step_rate = 32; + step_rate -= 32; // Correct for minimal speed - #ifdef BED_USES_THERMISTOR + if(step_rate >= (8*256)) + { // higher step rate + unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; + unsigned char tmp_step_rate = (step_rate & 0x00ff); + unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); + MultiU16X8toH16(timer, tmp_step_rate, gain); + timer = (unsigned short)pgm_read_word_near(table_address) - timer; + } + else + { // lower step rates + unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; + table_address += ((step_rate)>>1) & 0xfffc; + timer = (unsigned short)pgm_read_word_near(table_address); + timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); + } - current_bed_raw = analogRead(TEMP_1_PIN); - #ifdef DEBUG_HEAT_MGMT - log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw); - log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS); - #endif + if(timer < 100) timer = 100; - // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, - // this switches it up so that the reading appears lower than target for the control logic. - current_bed_raw = 1023 - current_bed_raw; - #elif defined BED_USES_AD595 - current_bed_raw = analogRead(TEMP_1_PIN); + return timer; +} +// Initializes the trapezoid generator from the current block. Called whenever a new +// block begins. +inline void trapezoid_generator_reset() +{ + accelerate_until = current_block->accelerate_until; + decelerate_after = current_block->decelerate_after; + acceleration_rate = current_block->acceleration_rate; + initial_rate = current_block->initial_rate; + final_rate = current_block->final_rate; + nominal_rate = current_block->nominal_rate; + + #ifdef ADVANCE + advance = current_block->initial_advance; + final_advance = current_block->final_advance; + advance_rate = current_block->advance_rate; #endif + deceleration_time = 0; - #ifdef MINTEMP - if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp) - #else - if(current_bed_raw >= target_bed_raw) - #endif - { - WRITE(HEATER_1_PIN,LOW); - } - else - { - WRITE(HEATER_1_PIN,HIGH); - } - #endif - -#ifdef CONTROLLERFAN_PIN - controllerFan(); //Check if fan should be turned on to cool stepper drivers down -#endif + // step_rate to timer interval + acc_step_rate = initial_rate; + acceleration_time = calc_timer(acc_step_rate); + OCR1A = acceleration_time; } -#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR) -int temp2analog_thermistor(int celsius, const short table[][2], int numtemps) { - int raw = 0; - byte i; - - for (i=1; i<numtemps; i++) - { - if (table[i][1] < celsius) - { - raw = table[i-1][0] + - (celsius - table[i-1][1]) * - (table[i][0] - table[i-1][0]) / - (table[i][1] - table[i-1][1]); - - break; +// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. +// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. +ISR(TIMER1_COMPA_vect) +{ + if(busy){ /*Serial.println("BUSY")*/; + return; + } // The busy-flag is used to avoid reentering this interrupt + + busy = true; + sei(); // Re enable interrupts (normally disabled while inside an interrupt handler) + + // If there is no current block, attempt to pop one from the buffer + if (current_block == NULL) { + // Anything in the buffer? + current_block = plan_get_current_block(); + if (current_block != NULL) { + trapezoid_generator_reset(); + counter_x = -(current_block->step_event_count >> 1); + counter_y = counter_x; + counter_z = counter_x; + counter_e = counter_x; + step_events_completed = 0; + e_steps = 0; + } + else { + DISABLE_STEPPER_DRIVER_INTERRUPT(); + } + } + + if (current_block != NULL) { + // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt + out_bits = current_block->direction_bits; + +#ifdef ADVANCE + // Calculate E early. + counter_e += current_block->steps_e; + if (counter_e > 0) { + counter_e -= current_block->step_event_count; + if ((out_bits & (1<<E_AXIS)) != 0) { // - direction + CRITICAL_SECTION_START; + e_steps--; + CRITICAL_SECTION_END; + } + else { + CRITICAL_SECTION_START; + e_steps++; + CRITICAL_SECTION_END; + } + } + // Do E steps + advance steps + CRITICAL_SECTION_START; + e_steps += ((advance >> 16) - old_advance); + CRITICAL_SECTION_END; + old_advance = advance >> 16; +#endif //ADVANCE + + // Set direction en check limit switches + if ((out_bits & (1<<X_AXIS)) != 0) { // -direction + WRITE(X_DIR_PIN, INVERT_X_DIR); + if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) { + step_events_completed = current_block->step_event_count; } } + else // +direction + WRITE(X_DIR_PIN,!INVERT_X_DIR); - // Overflow: Set to last value in the table - if (i == numtemps) raw = table[i-1][0]; - - return 1023 - raw; -} -#endif - -#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595) -int temp2analog_ad595(int celsius) { - return celsius * 1024 / (500); -} -#endif - -#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675) -int temp2analog_max6675(int celsius) { - return celsius * 4; -} -#endif + if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction + WRITE(Y_DIR_PIN,INVERT_Y_DIR); + if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) { + step_events_completed = current_block->step_event_count; + } + } + else // +direction + WRITE(Y_DIR_PIN,!INVERT_Y_DIR); -#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR) -int analog2temp_thermistor(int raw,const short table[][2], int numtemps) { - int celsius = 0; - byte i; - - raw = 1023 - raw; + if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction + WRITE(Z_DIR_PIN,INVERT_Z_DIR); + if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) { + step_events_completed = current_block->step_event_count; + } + } + else // +direction + WRITE(Z_DIR_PIN,!INVERT_Z_DIR); + +#ifndef ADVANCE + if ((out_bits & (1<<E_AXIS)) != 0) // -direction + WRITE(E_DIR_PIN,INVERT_E_DIR); + else // +direction + WRITE(E_DIR_PIN,!INVERT_E_DIR); +#endif //!ADVANCE + + counter_x += current_block->steps_x; + if (counter_x > 0) { + WRITE(X_STEP_PIN, HIGH); + counter_x -= current_block->step_event_count; + WRITE(X_STEP_PIN, LOW); + } - for (i=1; i<numtemps; i++) - { - if (table[i][0] > raw) - { - celsius = table[i-1][1] + - (raw - table[i-1][0]) * - (table[i][1] - table[i-1][1]) / - (table[i][0] - table[i-1][0]); + counter_y += current_block->steps_y; + if (counter_y > 0) { + WRITE(Y_STEP_PIN, HIGH); + counter_y -= current_block->step_event_count; + WRITE(Y_STEP_PIN, LOW); + } - break; - } + counter_z += current_block->steps_z; + if (counter_z > 0) { + WRITE(Z_STEP_PIN, HIGH); + counter_z -= current_block->step_event_count; + WRITE(Z_STEP_PIN, LOW); } - // Overflow: Set to last value in the table - if (i == numtemps) celsius = table[i-1][1]; +#ifndef ADVANCE + counter_e += current_block->steps_e; + if (counter_e > 0) { + WRITE(E_STEP_PIN, HIGH); + counter_e -= current_block->step_event_count; + WRITE(E_STEP_PIN, LOW); + } +#endif //!ADVANCE + + // Calculare new timer value + unsigned short timer; + unsigned short step_rate; + if (step_events_completed < accelerate_until) { + MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate); + acc_step_rate += initial_rate; + + // upper limit + if(acc_step_rate > nominal_rate) + acc_step_rate = nominal_rate; + + // step_rate to timer interval + timer = calc_timer(acc_step_rate); + advance += advance_rate; + acceleration_time += timer; + OCR1A = timer; + } + else if (step_events_completed >= decelerate_after) { + MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate); + + if(step_rate > acc_step_rate) { // Check step_rate stays positive + step_rate = final_rate; + } + else { + step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. + } - return celsius; + // lower limit + if(step_rate < final_rate) + step_rate = final_rate; + + // step_rate to timer interval + timer = calc_timer(step_rate); +#ifdef ADVANCE + advance -= advance_rate; + if(advance < final_advance) + advance = final_advance; +#endif //ADVANCE + deceleration_time += timer; + OCR1A = timer; + } + // If current block is finished, reset pointer + step_events_completed += 1; + if (step_events_completed >= current_block->step_event_count) { + current_block = NULL; + plan_discard_current_block(); + } + } + busy=false; } -#endif -#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595) -int analog2temp_ad595(int raw) { - return raw * 500 / 1024; -} -#endif +#ifdef ADVANCE -#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675) -int analog2temp_max6675(int raw) { - return raw / 4; +unsigned char old_OCR0A; +// Timer interrupt for E. e_steps is set in the main routine; +// Timer 0 is shared with millies +ISR(TIMER0_COMPA_vect) +{ + // Critical section needed because Timer 1 interrupt has higher priority. + // The pin set functions are placed on trategic position to comply with the stepper driver timing. + WRITE(E_STEP_PIN, LOW); + // Set E direction (Depends on E direction + advance) + if (e_steps < 0) { + WRITE(E_DIR_PIN,INVERT_E_DIR); + e_steps++; + WRITE(E_STEP_PIN, HIGH); + } + if (e_steps > 0) { + WRITE(E_DIR_PIN,!INVERT_E_DIR); + e_steps--; + WRITE(E_STEP_PIN, HIGH); + } + old_OCR0A += 25; // 10kHz interrupt + OCR0A = old_OCR0A; } -#endif +#endif // ADVANCE -inline void kill() +void st_init() { - #if TEMP_0_PIN > -1 - target_raw=0; - WRITE(HEATER_0_PIN,LOW); - #endif - #if TEMP_1_PIN > -1 - target_bed_raw=0; - if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW); - #endif - disable_x(); - disable_y(); - disable_z(); - disable_e(); - - if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); - + // waveform generation = 0100 = CTC + TCCR1B &= ~(1<<WGM13); + TCCR1B |= (1<<WGM12); + TCCR1A &= ~(1<<WGM11); + TCCR1A &= ~(1<<WGM10); + + // output mode = 00 (disconnected) + TCCR1A &= ~(3<<COM1A0); + TCCR1A &= ~(3<<COM1B0); + TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer + + OCR1A = 0x4000; + DISABLE_STEPPER_DRIVER_INTERRUPT(); + +#ifdef ADVANCE + e_steps = 0; + TIMSK0 |= (1<<OCIE0A); +#endif //ADVANCE + sei(); } -inline void manage_inactivity(byte debug) { -if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); -if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); } +// Block until all buffered steps are executed +void st_synchronize() +{ + while(plan_get_current_block()) { + manage_heater(); + manage_inactivity(1); + } } -#ifdef RAMP_ACCELERATION -void setup_acceleration() { - for (int i=0; i < NUM_AXIS; i++) { - axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]); - axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; - axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; - } -} -#endif #ifdef DEBUG void log_message(char* message) { diff --git a/Sprinter/arc_func.cpp b/Sprinter/arc_func.cpp new file mode 100644 index 0000000..03b6d1f --- /dev/null +++ b/Sprinter/arc_func.cpp @@ -0,0 +1,143 @@ +/* + arc_func.c - high level interface for issuing motion commands + Part of Grbl + + Copyright (c) 2009-2011 Simen Svale Skogsrud + Copyright (c) 2011 Sungeun K. Jeon + + Grbl is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Grbl is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Grbl. If not, see <http://www.gnu.org/licenses/>. +*/ + +#include <avr/pgmspace.h> +#include <math.h> + +#include "Configuration.h" +#include "Sprinter.h" + +// The arc is approximated by generating a huge number of tiny, linear segments. The length of each +// segment is configured in settings.mm_per_arc_segment. +void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, + uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise) +{ + // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); + // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc + float center_axis0 = position[axis_0] + offset[axis_0]; + float center_axis1 = position[axis_1] + offset[axis_1]; + float linear_travel = target[axis_linear] - position[axis_linear]; + float extruder_travel = target[E_AXIS] - position[E_AXIS]; + float r_axis0 = -offset[axis_0]; // Radius vector from center to current location + float r_axis1 = -offset[axis_1]; + float rt_axis0 = target[axis_0] - center_axis0; + float rt_axis1 = target[axis_1] - center_axis1; + + // CCW angle between position and target from circle center. Only one atan2() trig computation required. + float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); + if (angular_travel < 0) { angular_travel += 2*M_PI; } + if (isclockwise) { angular_travel -= 2*M_PI; } + + float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); + if (millimeters_of_travel == 0.0) { return; } + uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); + /* + // Multiply inverse feed_rate to compensate for the fact that this movement is approximated + // by a number of discrete segments. The inverse feed_rate should be correct for the sum of + // all segments. + if (invert_feed_rate) { feed_rate *= segments; } + */ + float theta_per_segment = angular_travel/segments; + float linear_per_segment = linear_travel/segments; + float extruder_per_segment = extruder_travel/segments; + + /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, + and phi is the angle of rotation. Based on the solution approach by Jens Geisler. + r_T = [cos(phi) -sin(phi); + sin(phi) cos(phi] * r ; + + For arc generation, the center of the circle is the axis of rotation and the radius vector is + defined from the circle center to the initial position. Each line segment is formed by successive + vector rotations. This requires only two cos() and sin() computations to form the rotation + matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since + all double numbers are single precision on the Arduino. (True double precision will not have + round off issues for CNC applications.) Single precision error can accumulate to be greater than + tool precision in some cases. Therefore, arc path correction is implemented. + + Small angle approximation may be used to reduce computation overhead further. This approximation + holds for everything, but very small circles and large mm_per_arc_segment values. In other words, + theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large + to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for + numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an + issue for CNC machines with the single precision Arduino calculations. + + This approximation also allows mc_arc to immediately insert a line segment into the planner + without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied + a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. + This is important when there are successive arc motions. + */ + // Vector rotation matrix values + float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation + float sin_T = theta_per_segment; + + float arc_target[4]; + float sin_Ti; + float cos_Ti; + float r_axisi; + uint16_t i; + int8_t count = 0; + + // Initialize the linear axis + arc_target[axis_linear] = position[axis_linear]; + + // Initialize the extruder axis + arc_target[E_AXIS] = position[E_AXIS]; + + for (i = 1; i<segments; i++) + { // Increment (segments-1) + + if (count < N_ARC_CORRECTION) //25 pieces + { + // Apply vector rotation matrix + r_axisi = r_axis0*sin_T + r_axis1*cos_T; + r_axis0 = r_axis0*cos_T - r_axis1*sin_T; + r_axis1 = r_axisi; + count++; + } + else + { + // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. + // Compute exact location by applying transformation matrix from initial radius vector(=-offset). + cos_Ti = cos(i*theta_per_segment); + sin_Ti = sin(i*theta_per_segment); + r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; + r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; + count = 0; + } + + // Update arc_target location + arc_target[axis_0] = center_axis0 + r_axis0; + arc_target[axis_1] = center_axis1 + r_axis1; + arc_target[axis_linear] += linear_per_segment; + arc_target[E_AXIS] += extruder_per_segment; + + //showString(PSTR("sec:")); + //Serial.println(i); + plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate); + + } + // Ensure last segment arrives at target location. + //showString(PSTR("Last sec\r\n")); + plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate); + + // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); +} + diff --git a/Sprinter/arc_func.h b/Sprinter/arc_func.h new file mode 100644 index 0000000..03ecd9d --- /dev/null +++ b/Sprinter/arc_func.h @@ -0,0 +1,32 @@ +/* + arc_func.h - high level interface for issuing motion commands + Part of Grbl + + Copyright (c) 2009-2011 Simen Svale Skogsrud + Copyright (c) 2011 Sungeun K. Jeon + + Grbl is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Grbl is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Grbl. If not, see <http://www.gnu.org/licenses/>. +*/ + +#ifndef arc_func_h +#define arc_func_h + +// Execute an arc in offset mode format. position == current xyz, target == target xyz, +// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is +// the direction of helical travel, radius == circle radius, isclockwise boolean. Used +// for vector transformation direction. +void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, + unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise); + +#endif diff --git a/Sprinter/heater.cpp b/Sprinter/heater.cpp new file mode 100644 index 0000000..8739103 --- /dev/null +++ b/Sprinter/heater.cpp @@ -0,0 +1,574 @@ +/* + Reprap heater funtions based on Sprinter + + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +/* + This softwarepart for Heatercontrol is based on Sprinter + big thanks to kliment (https://github.com/kliment/Sprinter) +*/ + + +#include <avr/pgmspace.h> + +#include "heater.h" +#include "fastio.h" +#include "pins.h" +#include "Sprinter.h" + + + +// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the +// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25 +// degree increments (i.e. 100=25 deg). + +int target_raw = 0; +int target_temp = 0; +int current_raw = 0; +int current_raw_maxval = -32000; +int current_raw_minval = 32000; +int tt_maxval; +int tt_minval; +int target_bed_raw = 0; +int current_bed_raw = 0; +unsigned long previous_millis_heater, previous_millis_bed_heater, previous_millis_monitor; + +#ifdef PIDTEMP + int g_heater_pwm_val = 0; + + unsigned char PWM_off_time = 0; + unsigned char PWM_out_on = 0; + + int temp_iState = 0; + int temp_dState = 0; + int prev_temp = 0; + int pTerm; + int iTerm; + int dTerm; + //int output; + int error; + int heater_duty = 0; + const int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN; + const int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN; +#endif + + +#ifdef AUTOTEMP + float autotemp_max=AUTO_TEMP_MAX; + float autotemp_min=AUTO_TEMP_MIN; + float autotemp_factor=AUTO_TEMP_FACTOR; + int autotemp_setpoint=0; + bool autotemp_enabled=true; +#endif + +#ifndef HEATER_CURRENT + #define HEATER_CURRENT 255 +#endif + +#ifdef SMOOTHING + uint32_t nma = 0; +#endif + +#ifdef WATCHPERIOD + int watch_raw = -1000; + unsigned long watchmillis = 0; +#endif + +#ifdef MINTEMP + int minttemp = temp2analogh(MINTEMP); +#endif + +#ifdef MAXTEMP + int maxttemp = temp2analogh(MAXTEMP); +#endif + + + +#define HEAT_INTERVAL 250 +#ifdef HEATER_USES_MAX6675 +unsigned long max6675_previous_millis = 0; +int max6675_temp = 2000; + +int read_max6675() +{ + if (millis() - max6675_previous_millis < HEAT_INTERVAL) + return max6675_temp; + + max6675_previous_millis = millis(); + + max6675_temp = 0; + + #ifdef PRR + PRR &= ~(1<<PRSPI); + #elif defined PRR0 + PRR0 &= ~(1<<PRSPI); + #endif + + SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); + + // enable TT_MAX6675 + WRITE(MAX6675_SS, 0); + + // ensure 100ns delay - a bit extra is fine + delay(1); + + // read MSB + SPDR = 0; + for (;(SPSR & (1<<SPIF)) == 0;); + max6675_temp = SPDR; + max6675_temp <<= 8; + + // read LSB + SPDR = 0; + for (;(SPSR & (1<<SPIF)) == 0;); + max6675_temp |= SPDR; + + // disable TT_MAX6675 + WRITE(MAX6675_SS, 1); + + if (max6675_temp & 4) + { + // thermocouple open + max6675_temp = 2000; + } + else + { + max6675_temp = max6675_temp >> 3; + } + + return max6675_temp; +} +#endif + + +#ifdef PID_SOFT_PWM + + void init_Timer2_softpwm(void) + { + // This is a simple SOFT PWM with 500 Hz for Extruder Heating + + + TIFR2 = (1 << TOV2); // clear interrupt flag + TCCR2B = (1 << CS22) | (1 << CS20); // start timer (ck/128 prescalar) + TCCR2A = (1 << WGM21); // CTC mode + OCR2A = 128; // We want to have at least 30Hz or else it gets choppy + TIMSK2 = (1 << OCIE2A); // enable timer2 output compare match interrupt + + } + + + ISR(TIMER2_COMPA_vect) + { + + + if(g_heater_pwm_val < 2) + { + #if LED_PIN > -1 + WRITE(LED_PIN,LOW); + #endif + WRITE(HEATER_0_PIN,LOW); + PWM_out_on = 0; + OCR2A = 128; + } + else if(g_heater_pwm_val > 253) + { + #if LED_PIN > -1 + WRITE(LED_PIN,HIGH); + #endif + WRITE(HEATER_0_PIN,HIGH); + PWM_out_on = 1; + OCR2A = 128; + } + else + { + + if(PWM_out_on == 1) + { + + #if LED_PIN > -1 + WRITE(LED_PIN,LOW); + #endif + WRITE(HEATER_0_PIN,LOW); + PWM_out_on = 0; + OCR2A = PWM_off_time; + } + else + { + + #if LED_PIN > -1 + WRITE(LED_PIN,HIGH); + #endif + WRITE(HEATER_0_PIN,HIGH); + PWM_out_on = 1; + + if(g_heater_pwm_val > 253) + { + OCR2A = 253; + PWM_off_time = 2; + } + else if(g_heater_pwm_val < 2) + { + OCR2A = 2; + PWM_off_time = 253; + } + else + { + OCR2A = g_heater_pwm_val; + PWM_off_time = 255 - g_heater_pwm_val; + } + + } + } + + + } + #endif + + + + void manage_heater() + { + + //Temperatur Monitor for repetier + if((millis() - previous_millis_monitor) > 250 ) + { + previous_millis_monitor = millis(); + if(manage_monitor <= 1) + { + showString(PSTR("MTEMP:")); + Serial.print(millis()); + if(manage_monitor<1) + { + showString(PSTR(" ")); + Serial.print(analog2temp(current_raw)); + showString(PSTR(" ")); + Serial.print(target_temp); + showString(PSTR(" ")); + Serial.println(heater_duty); + } + #if THERMISTORBED!=0 + else + { + showString(PSTR(" ")); + Serial.print(analog2tempBed(current_bed_raw)); + showString(PSTR(" ")); + Serial.print(analog2tempBed(target_bed_raw)); + showString(PSTR(" ")); + if(READ(HEATER_1_PIN)) + Serial.println(255); + else + Serial.println(0); + } + #endif + + } + + } + // ENDE Temperatur Monitor for repetier + + if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL ) + return; + + previous_millis_heater = millis(); + + #ifdef HEATER_USES_THERMISTOR + current_raw = analogRead(TEMP_0_PIN); + #ifdef DEBUG_HEAT_MGMT + log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw); + log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS); + #endif + // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, + // this switches it up so that the reading appears lower than target for the control logic. + current_raw = 1023 - current_raw; + #elif defined HEATER_USES_AD595 + current_raw = analogRead(TEMP_0_PIN); + #elif defined HEATER_USES_MAX6675 + current_raw = read_max6675(); + #endif + + //MIN / MAX save to display the jitter of Heaterbarrel + if(current_raw > current_raw_maxval) + current_raw_maxval = current_raw; + + if(current_raw < current_raw_minval) + current_raw_minval = current_raw; + + #ifdef SMOOTHING + if (!nma) nma = SMOOTHFACTOR * current_raw; + nma = (nma + current_raw) - (nma / SMOOTHFACTOR); + current_raw = nma / SMOOTHFACTOR; + #endif + + #ifdef WATCHPERIOD + if(watchmillis && millis() - watchmillis > WATCHPERIOD) + { + if(watch_raw + 1 >= current_raw) + { + target_temp = target_raw = 0; + WRITE(HEATER_0_PIN,LOW); + + #ifdef PID_SOFT_PWM + g_heater_pwm_val = 0; + #else + analogWrite(HEATER_0_PIN, 0); + #if LED_PIN>-1 + WRITE(LED_PIN,LOW); + #endif + #endif + } + else + { + watchmillis = 0; + } + } + #endif + + //If tmp is lower then MINTEMP stop the Heater + //or it os better to deaktivate the uutput PIN or PWM ? + #ifdef MINTEMP + if(current_raw <= minttemp) + target_temp = target_raw = 0; + #endif + + #ifdef MAXTEMP + if(current_raw >= maxttemp) + { + target_temp = target_raw = 0; + + #if (ALARM_PIN > -1) + WRITE(ALARM_PIN,HIGH); + #endif + } + #endif + + #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595) + #ifdef PIDTEMP + + int current_temp = analog2temp(current_raw); + error = target_temp - current_temp; + int delta_temp = current_temp - prev_temp; + + prev_temp = current_temp; + pTerm = ((long)PID_PGAIN * error) / 256; + const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT); + heater_duty = H0 + pTerm; + + if(error < 30) + { + temp_iState += error; + temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max); + iTerm = ((long)PID_IGAIN * temp_iState) / 256; + heater_duty += iTerm; + } + + int prev_error = abs(target_temp - prev_temp); + int log3 = 1; // discrete logarithm base 3, plus 1 + + if(prev_error > 81){ prev_error /= 81; log3 += 4; } + if(prev_error > 9){ prev_error /= 9; log3 += 2; } + if(prev_error > 3){ prev_error /= 3; log3 ++; } + + dTerm = ((long)PID_DGAIN * delta_temp) / (256*log3); + heater_duty += dTerm; + heater_duty = constrain(heater_duty, 0, HEATER_CURRENT); + + #ifdef PID_SOFT_PWM + g_heater_pwm_val = heater_duty; + #else + analogWrite(HEATER_0_PIN, heater_duty); + + #if LED_PIN>-1 + analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255)); + #endif + #endif + + #else + + if(current_raw >= target_raw) + { + WRITE(HEATER_0_PIN,LOW); + #if LED_PIN>-1 + WRITE(LED_PIN,LOW); + #endif + } + else + { + WRITE(HEATER_0_PIN,HIGH); + #if LED_PIN > -1 + WRITE(LED_PIN,HIGH); + #endif + } + #endif + #endif + + if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) + return; + + previous_millis_bed_heater = millis(); + + #ifndef TEMP_1_PIN + return; + #endif + + #if TEMP_1_PIN == -1 + return; + #else + + #ifdef BED_USES_THERMISTOR + + current_bed_raw = analogRead(TEMP_1_PIN); + + #ifdef DEBUG_HEAT_MGMT + log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw); + log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS); + #endif + + // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, + // this switches it up so that the reading appears lower than target for the control logic. + current_bed_raw = 1023 - current_bed_raw; + #elif defined BED_USES_AD595 + current_bed_raw = analogRead(TEMP_1_PIN); + + #endif + + + #ifdef MINTEMP + if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp) + #else + if(current_bed_raw >= target_bed_raw) + #endif + { + WRITE(HEATER_1_PIN,LOW); + } + else + { + WRITE(HEATER_1_PIN,HIGH); + } + #endif + +#ifdef CONTROLLERFAN_PIN + controllerFan(); //Check if fan should be turned on to cool stepper drivers down +#endif + +} + +#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR) +int temp2analog_thermistor(int celsius, const short table[][2], int numtemps) +{ + int raw = 0; + byte i; + + for (i=1; i<numtemps; i++) + { + if (table[i][1] < celsius) + { + raw = table[i-1][0] + + (celsius - table[i-1][1]) * + (table[i][0] - table[i-1][0]) / + (table[i][1] - table[i-1][1]); + + break; + } + } + + // Overflow: Set to last value in the table + if (i == numtemps) raw = table[i-1][0]; + + return 1023 - raw; +} +#endif + +#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595) +int temp2analog_ad595(int celsius) +{ + return celsius * 1024 / (500); +} +#endif + +#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675) +int temp2analog_max6675(int celsius) +{ + return celsius * 4; +} +#endif + +#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR) +int analog2temp_thermistor(int raw,const short table[][2], int numtemps) { + int celsius = 0; + byte i; + + raw = 1023 - raw; + + for (i=1; i<numtemps; i++) + { + if (table[i][0] > raw) + { + celsius = table[i-1][1] + + (raw - table[i-1][0]) * + (table[i][1] - table[i-1][1]) / + (table[i][0] - table[i-1][0]); + + break; + } + } + + // Overflow: Set to last value in the table + if (i == numtemps) celsius = table[i-1][1]; + + return celsius; +} +#endif + +#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595) +int analog2temp_ad595(int raw) +{ + return raw * 500 / 1024; +} +#endif + +#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675) +int analog2temp_max6675(int raw) +{ + return raw / 4; +} +#endif + +#ifdef CONTROLLERFAN_PIN +unsigned long lastMotor = 0; //Save the time for when a motor was turned on last +unsigned long lastMotorCheck = 0; + +void controllerFan() +{ + if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms + { + lastMotorCheck = millis(); + + if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled... + { + lastMotor = millis(); //... set time to NOW so the fan will turn on + } + + if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... + { + WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off + } + else + { + WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on + } + } +} +#endif + diff --git a/Sprinter/heater.h b/Sprinter/heater.h new file mode 100644 index 0000000..5470a4f --- /dev/null +++ b/Sprinter/heater.h @@ -0,0 +1,119 @@ +/* + Reprap heater funtions based on Sprinter + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +/* + This softwarepart for Heatercontrol is based on Sprinter + big thanks to kliment (https://github.com/kliment/Sprinter) + +*/ + + +#include "Configuration.h" +#include "thermistortables.h" + +#if defined HEATER_USES_THERMISTOR +#define temp2analogh( c ) temp2analog_thermistor(c,temptable,NUMTEMPS) +#define analog2temp( c ) analog2temp_thermistor(c,temptable,NUMTEMPS) +#elif defined HEATER_USES_AD595 +#define temp2analogh( c ) temp2analog_ad595(c) +#define analog2temp( c ) analog2temp_ad595(c) +#elif defined HEATER_USES_MAX6675 +#define temp2analogh( c ) temp2analog_max6675(c) +#define analog2temp( c ) analog2temp_max6675(c) +#endif + +#if defined BED_USES_THERMISTOR +#define temp2analogBed( c ) temp2analog_thermistor((c),bedtemptable,BNUMTEMPS) +#define analog2tempBed( c ) analog2temp_thermistor((c),bedtemptable,BNUMTEMPS) +#elif defined BED_USES_AD595 +#define temp2analogBed( c ) temp2analog_ad595(c) +#define analog2tempBed( c ) analog2temp_ad595(c) +#elif defined BED_USES_MAX6675 +#define temp2analogBed( c ) temp2analog_max6675(c) +#define analog2tempBed( c ) analog2temp_max6675(c) +#endif + +#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR) +int temp2analog_thermistor(int celsius, const short table[][2], int numtemps); +int analog2temp_thermistor(int raw,const short table[][2], int numtemps); +#endif + +#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595) +int temp2analog_ad595(int celsius); +int analog2temp_ad595(int raw); +#endif + +#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675) +int temp2analog_max6675(int celsius); +int analog2temp_max6675(int raw); +#endif + + +extern int target_raw; +extern int target_temp; +extern int current_raw; +extern int current_raw_maxval; +extern int current_raw_minval; +extern int tt_maxval; +extern int tt_minval; +extern int target_bed_raw; +extern int current_bed_raw; +extern unsigned long previous_millis_heater, previous_millis_bed_heater; +extern unsigned char manage_monitor; + +#ifdef PIDTEMP + extern int g_heater_pwm_val; + + extern unsigned char PWM_off_time; + extern unsigned char PWM_out_on; + + extern int temp_iState; + extern int temp_dState; + extern int prev_temp; + extern int pTerm; + extern int iTerm; + extern int dTerm; + extern int error; + extern int heater_duty; +#endif + + +#ifdef AUTOTEMP + extern float autotemp_max; + extern float autotemp_min; + extern float autotemp_factor; + extern int autotemp_setpoint; + extern bool autotemp_enabled; +#endif + + +#ifdef SMOOTHING + extern uint32_t nma; +#endif + +#ifdef WATCHPERIOD + extern int watch_raw; + extern unsigned long watchmillis; +#endif + + + + +#ifdef PID_SOFT_PWM + void init_Timer2_softpwm(void); +#endif + +void manage_heater(); diff --git a/Sprinter/pins.h b/Sprinter/pins.h index 3bc337e..25dbd54 100644 --- a/Sprinter/pins.h +++ b/Sprinter/pins.h @@ -662,21 +662,17 @@ #define HEATER_0_PIN 13 // (extruder) #ifdef SANGUINOLOLU_V_1_2 - #define HEATER_1_PIN 12 // (bed) #define X_ENABLE_PIN 14 #define Y_ENABLE_PIN 14 #define Z_ENABLE_PIN 26 #define E_ENABLE_PIN 14 - #else - #define HEATER_1_PIN 14 // (bed) #define X_ENABLE_PIN -1 #define Y_ENABLE_PIN -1 #define Z_ENABLE_PIN -1 #define E_ENABLE_PIN -1 - #endif #define TEMP_0_PIN 7 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder) diff --git a/Sprinter/speed_lookuptable.h b/Sprinter/speed_lookuptable.h new file mode 100644 index 0000000..26eacc1 --- /dev/null +++ b/Sprinter/speed_lookuptable.h @@ -0,0 +1,76 @@ +#ifndef SPEED_LOOKUPTABLE_H +#define SPEED_LOOKUPTABLE_H + +#include <avr/pgmspace.h> + +uint16_t speed_lookuptable_fast[256][2] PROGMEM = { +{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135}, +{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32}, +{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14}, +{ 323, 13}, { 310, 11}, { 299, 11}, { 288, 11}, { 277, 9}, { 268, 9}, { 259, 8}, { 251, 8}, +{ 243, 8}, { 235, 7}, { 228, 6}, { 222, 6}, { 216, 6}, { 210, 6}, { 204, 5}, { 199, 5}, +{ 194, 5}, { 189, 4}, { 185, 4}, { 181, 4}, { 177, 4}, { 173, 4}, { 169, 4}, { 165, 3}, +{ 162, 3}, { 159, 4}, { 155, 3}, { 152, 3}, { 149, 2}, { 147, 3}, { 144, 3}, { 141, 2}, +{ 139, 3}, { 136, 2}, { 134, 2}, { 132, 3}, { 129, 2}, { 127, 2}, { 125, 2}, { 123, 2}, +{ 121, 2}, { 119, 1}, { 118, 2}, { 116, 2}, { 114, 1}, { 113, 2}, { 111, 2}, { 109, 1}, +{ 108, 2}, { 106, 1}, { 105, 2}, { 103, 1}, { 102, 1}, { 101, 1}, { 100, 2}, { 98, 1}, +{ 97, 1}, { 96, 1}, { 95, 2}, { 93, 1}, { 92, 1}, { 91, 1}, { 90, 1}, { 89, 1}, +{ 88, 1}, { 87, 1}, { 86, 1}, { 85, 1}, { 84, 1}, { 83, 0}, { 83, 1}, { 82, 1}, +{ 81, 1}, { 80, 1}, { 79, 1}, { 78, 0}, { 78, 1}, { 77, 1}, { 76, 1}, { 75, 0}, +{ 75, 1}, { 74, 1}, { 73, 1}, { 72, 0}, { 72, 1}, { 71, 1}, { 70, 0}, { 70, 1}, +{ 69, 0}, { 69, 1}, { 68, 1}, { 67, 0}, { 67, 1}, { 66, 0}, { 66, 1}, { 65, 0}, +{ 65, 1}, { 64, 1}, { 63, 0}, { 63, 1}, { 62, 0}, { 62, 1}, { 61, 0}, { 61, 1}, +{ 60, 0}, { 60, 0}, { 60, 1}, { 59, 0}, { 59, 1}, { 58, 0}, { 58, 1}, { 57, 0}, +{ 57, 1}, { 56, 0}, { 56, 0}, { 56, 1}, { 55, 0}, { 55, 1}, { 54, 0}, { 54, 0}, +{ 54, 1}, { 53, 0}, { 53, 0}, { 53, 1}, { 52, 0}, { 52, 0}, { 52, 1}, { 51, 0}, +{ 51, 0}, { 51, 1}, { 50, 0}, { 50, 0}, { 50, 1}, { 49, 0}, { 49, 0}, { 49, 1}, +{ 48, 0}, { 48, 0}, { 48, 1}, { 47, 0}, { 47, 0}, { 47, 0}, { 47, 1}, { 46, 0}, +{ 46, 0}, { 46, 1}, { 45, 0}, { 45, 0}, { 45, 0}, { 45, 1}, { 44, 0}, { 44, 0}, +{ 44, 0}, { 44, 1}, { 43, 0}, { 43, 0}, { 43, 0}, { 43, 1}, { 42, 0}, { 42, 0}, +{ 42, 0}, { 42, 1}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 1}, { 40, 0}, +{ 40, 0}, { 40, 0}, { 40, 0}, { 40, 1}, { 39, 0}, { 39, 0}, { 39, 0}, { 39, 0}, +{ 39, 1}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 1}, { 37, 0}, { 37, 0}, +{ 37, 0}, { 37, 0}, { 37, 0}, { 37, 1}, { 36, 0}, { 36, 0}, { 36, 0}, { 36, 0}, +{ 36, 1}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 1}, +{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0}, +{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0}, +{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0}, +{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}, +}; + +uint16_t speed_lookuptable_slow[256][2] PROGMEM = { +{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894}, +{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657}, +{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331}, +{ 8928, 308}, { 8620, 287}, { 8333, 269}, { 8064, 252}, { 7812, 237}, { 7575, 223}, { 7352, 210}, { 7142, 198}, +{ 6944, 188}, { 6756, 178}, { 6578, 168}, { 6410, 160}, { 6250, 153}, { 6097, 145}, { 5952, 139}, { 5813, 132}, +{ 5681, 126}, { 5555, 121}, { 5434, 115}, { 5319, 111}, { 5208, 106}, { 5102, 102}, { 5000, 99}, { 4901, 94}, +{ 4807, 91}, { 4716, 87}, { 4629, 84}, { 4545, 81}, { 4464, 79}, { 4385, 75}, { 4310, 73}, { 4237, 71}, +{ 4166, 68}, { 4098, 66}, { 4032, 64}, { 3968, 62}, { 3906, 60}, { 3846, 59}, { 3787, 56}, { 3731, 55}, +{ 3676, 53}, { 3623, 52}, { 3571, 50}, { 3521, 49}, { 3472, 48}, { 3424, 46}, { 3378, 45}, { 3333, 44}, +{ 3289, 43}, { 3246, 41}, { 3205, 41}, { 3164, 39}, { 3125, 39}, { 3086, 38}, { 3048, 36}, { 3012, 36}, +{ 2976, 35}, { 2941, 35}, { 2906, 33}, { 2873, 33}, { 2840, 32}, { 2808, 31}, { 2777, 30}, { 2747, 30}, +{ 2717, 29}, { 2688, 29}, { 2659, 28}, { 2631, 27}, { 2604, 27}, { 2577, 26}, { 2551, 26}, { 2525, 25}, +{ 2500, 25}, { 2475, 25}, { 2450, 23}, { 2427, 24}, { 2403, 23}, { 2380, 22}, { 2358, 22}, { 2336, 22}, +{ 2314, 21}, { 2293, 21}, { 2272, 20}, { 2252, 20}, { 2232, 20}, { 2212, 20}, { 2192, 19}, { 2173, 18}, +{ 2155, 19}, { 2136, 18}, { 2118, 18}, { 2100, 17}, { 2083, 17}, { 2066, 17}, { 2049, 17}, { 2032, 16}, +{ 2016, 16}, { 2000, 16}, { 1984, 16}, { 1968, 15}, { 1953, 16}, { 1937, 14}, { 1923, 15}, { 1908, 15}, +{ 1893, 14}, { 1879, 14}, { 1865, 14}, { 1851, 13}, { 1838, 14}, { 1824, 13}, { 1811, 13}, { 1798, 13}, +{ 1785, 12}, { 1773, 13}, { 1760, 12}, { 1748, 12}, { 1736, 12}, { 1724, 12}, { 1712, 12}, { 1700, 11}, +{ 1689, 12}, { 1677, 11}, { 1666, 11}, { 1655, 11}, { 1644, 11}, { 1633, 10}, { 1623, 11}, { 1612, 10}, +{ 1602, 10}, { 1592, 10}, { 1582, 10}, { 1572, 10}, { 1562, 10}, { 1552, 9}, { 1543, 10}, { 1533, 9}, +{ 1524, 9}, { 1515, 9}, { 1506, 9}, { 1497, 9}, { 1488, 9}, { 1479, 9}, { 1470, 9}, { 1461, 8}, +{ 1453, 8}, { 1445, 9}, { 1436, 8}, { 1428, 8}, { 1420, 8}, { 1412, 8}, { 1404, 8}, { 1396, 8}, +{ 1388, 7}, { 1381, 8}, { 1373, 7}, { 1366, 8}, { 1358, 7}, { 1351, 7}, { 1344, 8}, { 1336, 7}, +{ 1329, 7}, { 1322, 7}, { 1315, 7}, { 1308, 6}, { 1302, 7}, { 1295, 7}, { 1288, 6}, { 1282, 7}, +{ 1275, 6}, { 1269, 7}, { 1262, 6}, { 1256, 6}, { 1250, 7}, { 1243, 6}, { 1237, 6}, { 1231, 6}, +{ 1225, 6}, { 1219, 6}, { 1213, 6}, { 1207, 6}, { 1201, 5}, { 1196, 6}, { 1190, 6}, { 1184, 5}, +{ 1179, 6}, { 1173, 5}, { 1168, 6}, { 1162, 5}, { 1157, 5}, { 1152, 6}, { 1146, 5}, { 1141, 5}, +{ 1136, 5}, { 1131, 5}, { 1126, 5}, { 1121, 5}, { 1116, 5}, { 1111, 5}, { 1106, 5}, { 1101, 5}, +{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4}, +{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4}, +{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4}, +{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}, +}; + +#endif |