summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README3
-rw-r--r--Sprinter/Configuration.h123
-rw-r--r--Sprinter/Makefile12
-rw-r--r--Sprinter/Sprinter.h115
-rw-r--r--Sprinter/Sprinter.pde2704
-rw-r--r--Sprinter/arc_func.cpp143
-rw-r--r--Sprinter/arc_func.h32
-rw-r--r--Sprinter/heater.cpp574
-rw-r--r--Sprinter/heater.h119
-rw-r--r--Sprinter/pins.h4
-rw-r--r--Sprinter/speed_lookuptable.h76
11 files changed, 2846 insertions, 1059 deletions
diff --git a/README b/README
index 2bd4c29..3af8f75 100644
--- a/README
+++ b/README
@@ -40,7 +40,8 @@ Software installation
1. Install the required packages (gcc-avr, avr-libc, etc.)
sudo apt-get install arduino-core
-2. Get the arduino software version 0018, uncompress it in a directory
+2. Get the arduino software version 0018 (0023 works for RAMPS), uncompress it in a directory
+Arduino software v1 DOES NOT work with Sprinter yet!
http://www.arduino.cc/en/Main/Software
3. Get the sanguino software, version 0018
diff --git a/Sprinter/Configuration.h b/Sprinter/Configuration.h
index 250a2d2..47e1590 100644
--- a/Sprinter/Configuration.h
+++ b/Sprinter/Configuration.h
@@ -14,7 +14,7 @@
// Gen 3 Plus = 21
// gen 3 Monolithic Electronics = 22
// Gen3 PLUS for TechZone Gen3 Remix Motherboard = 23
-#define MOTHERBOARD 3
+#define MOTHERBOARD 62
//// Thermistor settings:
// 1 is 100k thermistor
@@ -29,12 +29,13 @@
//// Calibration variables
// X, Y, Z, E steps per unit - Metric Prusa Mendel with Wade extruder:
-float axis_steps_per_unit[] = {80, 80, 3200/1.25,700};
+#define _AXIS_STEP_PER_UNIT {80, 80, 3200/1.25,700}
// Metric Prusa Mendel with Makergear geared stepper extruder:
-//float axis_steps_per_unit[] = {80,80,3200/1.25,1380};
+//#define _AXIS_STEP_PER_UNIT {80,80,3200/1.25,1380}
// MakerGear Hybrid Prusa Mendel:
// Z axis value is for .9 stepper(if you have 1.8 steppers for Z, you need to use 2272.7272)
-//float axis_steps_per_unit[] = {104.987, 104.987, 4545.4544, 1487};
+//#define _AXIS_STEP_PER_UNIT {104.987, 104.987, 4545.4544, 1487}
+
//// Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@@ -47,18 +48,27 @@ const bool Z_ENDSTOP_INVERT = false;
// This determines the communication speed of the printer
#define BAUDRATE 115200
+//#define BAUDRATE 250000
// Comment out (using // at the start of the line) to disable SD support:
#define SDSUPPORT
+// Uncomment to make run init.g from SD on boot
+//#define SDINITFILE
+
+//#define SD_FAST_XFER_AKTIV
+
+//-----------------------------------------------------------------------
//// ADVANCED SETTINGS - to tweak parameters
+//-----------------------------------------------------------------------
#ifdef SDSUPPORT
- //Fast transfer chunk size (> 1024 is unstable, change at your own risk).
- #define SD_FAST_XFER_CHUNK_SIZE 1024
+ #ifdef SD_FAST_XFER_AKTIV
+ //Fast transfer chunk size (> 1024 is unstable, change at your own risk).
+ #define SD_FAST_XFER_CHUNK_SIZE 1024
+ #endif
#endif
-#include "thermistortables.h"
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
@@ -81,23 +91,28 @@ const bool INVERT_Y_DIR = false;
const bool INVERT_Z_DIR = true;
const bool INVERT_E_DIR = false;
+
//// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
+
const bool min_software_endstops = false; //If true, axis won't move to coordinates less than zero.
-const bool max_software_endstops = true; //If true, axis won't move to coordinates greater than the defined lengths below.
+const bool max_software_endstops = true; //If true, axis won't move to coordinates greater than the defined lengths below.
+
+//Max Length for Prusa Mendel, check the ways of your axis and set this Values
const int X_MAX_LENGTH = 200;
const int Y_MAX_LENGTH = 200;
const int Z_MAX_LENGTH = 100;
//// MOVEMENT SETTINGS
const int NUM_AXIS = 4; // The axis order in all axis related arrays is X, Y, Z, E
-float max_feedrate[] = {200000, 200000, 240, 500000};
-float homing_feedrate[] = {1500,1500,120};
-bool axis_relative_modes[] = {false, false, false, false};
+#define _MAX_FEEDRATE {200000, 200000, 240, 500000}
+#define _HOMING_FEEDRATE {1500,1500,120}
+#define _AXIS_RELATIVE_MODES {false, false, false, false}
+
// Min step delay in microseconds. If you are experiencing missing steps, try to raise the delay microseconds, but be aware this
// If you enable this, make sure STEP_DELAY_RATIO is disabled.
@@ -119,29 +134,87 @@ long min_time_before_dir_change = 30; //milliseconds
//// Acceleration settings
#ifdef RAMP_ACCELERATION
// X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
-float max_start_speed_units_per_second[] = {25.0,25.0,0.2,10.0};
-long max_acceleration_units_per_sq_second[] = {1000,1000,50,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
-long max_travel_acceleration_units_per_sq_second[] = {500,500,50,500}; // X, Y, Z max acceleration in mm/s^2 for travel moves
+#define _ACCELERATION 2000 // Normal acceleration mm/s^2
+#define _RETRACT_ACCELERATION 7000 // Normal acceleration mm/s^2
+#define _MAX_XY_JERK (20.0*60)
+#define _MAX_Z_JERK (0.4*60)
+#define _MAX_START_SPEED_UNITS_PER_SECOND {25.0,25.0,0.2,10.0}
+#define _MAX_ACCELERATION_UNITS_PER_SQ_SECOND {500,500,50,500} // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
+#define _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND {500,500,50,500} // X, Y, Z max acceleration in mm/s^2 for travel moves
#endif
+
// Machine UUID
// This may be useful if you have multiple machines and wish to identify them by using the M115 command.
// By default we set it to zeros.
-char uuid[] = "00000000-0000-0000-0000-000000000000";
+#define _DEF_CHAR_UUID "00000000-0000-0000-0000-000000000000"
+
+//-----------------------------------------------------------------------
+//// Planner buffer Size
+//-----------------------------------------------------------------------
+
+// The number of linear motions that can be in the plan at any give time
+// if the SD Card need to much memory reduce the Values for Plannerpuffer (base of 2)
+#ifdef SDSUPPORT
+ #define BLOCK_BUFFER_SIZE 16
+ #define BLOCK_BUFFER_MASK 0x0f
+#else
+ #define BLOCK_BUFFER_SIZE 16
+ #define BLOCK_BUFFER_MASK 0x0f
+#endif
+
+//-----------------------------------------------------------------------
+//// SETTINGS FOR ARC FUNCTION (Command G2/G2)
+//-----------------------------------------------------------------------
+
+// Arc interpretation settings:
+//Step to split a cirrcle in small Lines
+#define MM_PER_ARC_SEGMENT 1
+//After this count of steps a new SIN / COS caluclation is startet to correct the circle interpolation
+#define N_ARC_CORRECTION 25
+
+//-----------------------------------------------------------------------
+//// HEATERCONTROL AND PID PARAMETERS
+//-----------------------------------------------------------------------
+
+//Testfunction to adjust the Hotend temperatur in case of Printingspeed
+//If the Printer print slow the Temp is going to AUTO_TEMP_MIN
+//At the moment this Value dont change the targettemp from the Hotend
+//The result of this function is only send with the Temperaturerequest to the host
+//#define AUTOTEMP
+#ifdef AUTOTEMP
+ #define AUTO_TEMP_MAX 240
+ #define AUTO_TEMP_MIN 205
+ #define AUTO_TEMP_FACTOR 0.025
+ #define AUTOTEMP_OLDWEIGHT 0.98
+#endif
+
//// AD595 THERMOCOUPLE SUPPORT UNTESTED... USE WITH CAUTION!!!!
//// PID settings:
// Uncomment the following line to enable PID support. This is untested and could be disastrous. Be careful.
-//#define PIDTEMP 1
+#define PIDTEMP 1
#ifdef PIDTEMP
+//Sanguinololu 1.2 and above, the PWM Output Hotend Timer 1 is used for the Hardware PWM
+//but in this Software use Timer1 for the Stepperfunction so it is not possible to use the "analogWrite" function.
+//This Soft PWM use Timer 2 with 400 Hz to drive the PWM for the hotend
+#define PID_SOFT_PWM
+
+//Measure the MIN/MAX Value of the Hotend Temp and show it with
+//Command M601 / Command M602 Reset the MIN/MAX Value
+//#define DEBUG_HEATER_TEMP
+
+//PID Controler Settings
#define PID_INTEGRAL_DRIVE_MAX 80 // too big, and heater will lag after changing temperature, too small and it might not compensate enough for long-term errors
#define PID_PGAIN 2560 //256 is 1.0 // value of X means that error of 1 degree is changing PWM duty by X, probably no need to go over 25
#define PID_IGAIN 64 //256 is 1.0 // value of X (e.g 0.25) means that each degree error over 1 sec (2 measurements) changes duty cycle by 2X (=0.5) units (verify?)
#define PID_DGAIN 4096 //256 is 1.0 // value of X means that around reached setpoint, each degree change over one measurement (half second) adjusts PWM by X units to compensate
+
// magic formula 1, to get approximate "zero error" PWM duty. Take few measurements with low PWM duty and make linear fit to get the formula
-#define HEATER_DUTY_FOR_SETPOINT(setpoint) ((int)((187L*(long)setpoint)>>8)-27) // for my makergear hot-end: linear fit {50,10},{60,20},{80,30},{105,50},{176,100},{128,64},{208,128}
+// for my makergear hot-end: linear fit {50,10},{60,20},{80,30},{105,50},{176,100},{128,64},{208,128}
+#define HEATER_DUTY_FOR_SETPOINT(setpoint) ((int)((187L*(long)setpoint)>>8)-27)
// magic formula 2, to make led brightness approximately linear
#define LED_PWM_FOR_BRIGHTNESS(brightness) ((64*brightness-1384)/(300-brightness))
#endif
@@ -152,12 +225,14 @@ char uuid[] = "00000000-0000-0000-0000-000000000000";
// How often should the heater check for new temp readings, in milliseconds
#define HEATER_CHECK_INTERVAL 500
#define BED_CHECK_INTERVAL 5000
+
// Comment the following line to enable heat management during acceleration
#define DISABLE_CHECK_DURING_ACC
#ifndef DISABLE_CHECK_DURING_ACC
// Uncomment the following line to disable heat management during moves
//#define DISABLE_CHECK_DURING_MOVE
#endif
+
// Uncomment the following line to disable heat management during travel moves (and extruder-only moves, eg: retracts), strongly recommended if you are missing steps mid print.
// Probably this should remain commented if are using PID.
// It also defines the max milliseconds interval after which a travel move is not considered so for the sake of this feature.
@@ -167,6 +242,7 @@ char uuid[] = "00000000-0000-0000-0000-000000000000";
//#define SMOOTHING
//#define SMOOTHFACTOR 16 //best to use a power of two here - determines how many values are averaged together by the smoothing algorithm
+
//// Experimental watchdog and minimal temp
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
@@ -200,13 +276,22 @@ char uuid[] = "00000000-0000-0000-0000-000000000000";
//#define CONTROLLERFAN_PIN 23 //Pin used for the fan to cool controller, comment out to disable this function
#define CONTROLLERFAN_SEC 60 //How many seconds, after all motors were disabled, the fan should run
+
+//-----------------------------------------------------------------------
+// DEBUGING
+//-----------------------------------------------------------------------
+
+
+//Uncomment this to see on the host if a wrong or unknown Command is recived
+//Only for Testing !!!
+//#define SEND_WRONG_CMD_INFO
+
// Uncomment the following line to enable debugging. You can better control debugging below the following line
//#define DEBUG
#ifdef DEBUG
//#define DEBUG_PREPARE_MOVE //Enable this to debug prepare_move() function
- //#define DEBUG_BRESENHAM //Enable this to debug the Bresenham algorithm
//#define DEBUG_RAMP_ACCELERATION //Enable this to debug all constant acceleration info
- //#define DEBUG_MOVE_TIME //Enable this to time each move and print the result
+ //#define DEBUG_MOVE_TIME //Enable this to time each move and print the result
//#define DEBUG_HEAT_MGMT //Enable this to debug heat management. WARNING, this will cause axes to jitter!
//#define DEBUG_DISABLE_CHECK_DURING_TRAVEL //Debug the namesake feature, see above in this file
#endif
diff --git a/Sprinter/Makefile b/Sprinter/Makefile
index 7e888b0..639cf1b 100644
--- a/Sprinter/Makefile
+++ b/Sprinter/Makefile
@@ -127,11 +127,11 @@ ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
-all: applet_files build sizeafter
+all: build sizeafter
build: elf hex
-applet_files: $(TARGET).pde
+applet/$(TARGET).cpp: $(TARGET).pde
# Here is the "preprocessing".
# It creates a .cpp file based with the same name as the .pde file.
# On top of the new .cpp file comes the WProgram.h header.
@@ -155,7 +155,7 @@ upload: applet/$(TARGET).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
- # Display size of file.
+# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) applet/$(TARGET).hex
ELFSIZE = $(SIZE) applet/$(TARGET).elf
sizebefore:
@@ -198,8 +198,8 @@ extcoff: $(TARGET).elf
.elf.sym:
$(NM) -n $< > $@
- # Link: create ELF output file from library.
-applet/$(TARGET).elf: $(TARGET).pde applet/core.a
+# Link: create ELF output file from library.
+applet/$(TARGET).elf: applet/core.a applet/$(TARGET).cpp
$(CC) $(ALL_CFLAGS) -Wl,--gc-sections -o $@ applet/$(TARGET).cpp -L. applet/core.a $(LDFLAGS)
applet/core.a: $(OBJ)
@@ -244,4 +244,4 @@ depend:
>> $(MAKEFILE); \
$(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)
-.PHONY: all build elf hex eep lss sym program coff extcoff clean depend applet_files sizebefore sizeafter
+.PHONY: all build elf hex eep lss sym program coff extcoff clean depend sizebefore sizeafter
diff --git a/Sprinter/Sprinter.h b/Sprinter/Sprinter.h
index 2ac9163..b90738c 100644
--- a/Sprinter/Sprinter.h
+++ b/Sprinter/Sprinter.h
@@ -2,52 +2,9 @@
// Licence: GPL
#include <WProgram.h>
#include "fastio.h"
-extern "C" void __cxa_pure_virtual();
-void __cxa_pure_virtual(){};
-void get_command();
-void process_commands();
-
-void manage_inactivity(byte debug);
-void setup_acceleration();
-
-void manage_heater();
-
-#if defined HEATER_USES_THERMISTOR
-#define temp2analogh( c ) temp2analog_thermistor(c,temptable,NUMTEMPS)
-#define analog2temp( c ) analog2temp_thermistor(c,temptable,NUMTEMPS)
-#elif defined HEATER_USES_AD595
-#define temp2analogh( c ) temp2analog_ad595(c)
-#define analog2temp( c ) analog2temp_ad595(c)
-#elif defined HEATER_USES_MAX6675
-#define temp2analogh( c ) temp2analog_max6675(c)
-#define analog2temp( c ) analog2temp_max6675(c)
-#endif
-
-#if defined BED_USES_THERMISTOR
-#define temp2analogBed( c ) temp2analog_thermistor((c),bedtemptable,BNUMTEMPS)
-#define analog2tempBed( c ) analog2temp_thermistor((c),bedtemptable,BNUMTEMPS)
-#elif defined BED_USES_AD595
-#define temp2analogBed( c ) temp2analog_ad595(c)
-#define analog2tempBed( c ) analog2temp_ad595(c)
-#elif defined BED_USES_MAX6675
-#define temp2analogBed( c ) temp2analog_max6675(c)
-#define analog2tempBed( c ) analog2temp_max6675(c)
-#endif
-
-#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
-int temp2analog_thermistor(int celsius, const short table[][2], int numtemps);
-int analog2temp_thermistor(int raw,const short table[][2], int numtemps);
-#endif
-#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
-int temp2analog_ad595(int celsius);
-int analog2temp_ad595(int raw);
-#endif
+extern "C" void __cxa_pure_virtual();
-#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
-int temp2analog_max6675(int celsius);
-int analog2temp_max6675(int raw);
-#endif
#if X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
@@ -78,12 +35,78 @@ int analog2temp_max6675(int raw);
#define disable_e() ;
#endif
+#define X_AXIS 0
+#define Y_AXIS 1
+#define Z_AXIS 2
+#define E_AXIS 3
+
+
+// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
+// the source g-code and may never actually be reached if acceleration management is active.
+typedef struct {
+ // Fields used by the bresenham algorithm for tracing the line
+ long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
+
+ long step_event_count; // The number of step events required to complete this block
+ volatile long accelerate_until; // The index of the step event on which to stop acceleration
+ volatile long decelerate_after; // The index of the step event on which to start decelerating
+ volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
+ unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
+
+ #ifdef ADVANCE
+ long advance_rate;
+ volatile long initial_advance;
+ volatile long final_advance;
+ float advance;
+ #endif
+
+ // Fields used by the motion planner to manage acceleration
+ float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
+ float nominal_speed; // The nominal speed for this block in mm/min
+ float millimeters; // The total travel of this block in mm
+ float entry_speed;
+ float acceleration; // acceleration mm/sec^2
+
+ // Settings for the trapezoid generator
+ long nominal_rate; // The nominal step rate for this block in step_events/sec
+ volatile long initial_rate; // The jerk-adjusted step rate at start of block
+ volatile long final_rate; // The minimal rate at exit
+ long acceleration_st; // acceleration steps/sec^2
+ volatile char busy;
+} block_t;
+
+
void FlushSerialRequestResend();
void ClearToSend();
+void showString (PGM_P s);
+
+void manage_inactivity(byte debug);
+
+
void get_coordinates();
void prepare_move();
-void linear_move(unsigned long steps_remaining[]);
-void do_step(int axis);
+void prepare_arc_move(char isclockwise);
+void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
+
void kill(byte debug);
+void check_axes_activity();
+void plan_init();
+void st_init();
+void tp_init();
+void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
+void plan_set_position(float x, float y, float z, float e);
+void st_wake_up();
+void st_synchronize();
+
+
+#ifdef DEBUG
+void log_message(char* message);
+void log_bool(char* message, bool value);
+void log_int(char* message, int value);
+void log_long(char* message, long value);
+void log_float(char* message, float value);
+void log_uint(char* message, unsigned int value);
+void log_ulong(char* message, unsigned long value);
+#endif
diff --git a/Sprinter/Sprinter.pde b/Sprinter/Sprinter.pde
index 874c333..8d97fbd 100644
--- a/Sprinter/Sprinter.pde
+++ b/Sprinter/Sprinter.pde
@@ -1,15 +1,68 @@
- // Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
-// Licence: GPL
+/*
+ Reprap firmware based on Sprinter
+ Optimize for Sanguinololu 1.2 and above
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+/*
+ This firmware is a mashup between Sprinter,grbl and parts from marlin.
+ (https://github.com/kliment/Sprinter)
+
+ Changes by Doppler Michael (midopple)
+
+ Planner is from Simen Svale Skogsrud
+ https://github.com/simen/grbl
+
+ Parts of Marlin Firmware from ErikZalm
+ https://github.com/ErikZalm/Marlin-non-gen6
+
+ Sprinter V2
+
+- Look Vorward Funktion -
+- Stepper Control with Timer 1
+- SOFT PWM for Extruder heating --> Free Timer 1
+- G2 / G3 Command for arc real arc
+- Baudrate 250 kbaud
+- M30 Command delete file on SD Card
+- Text moved to flash to free RAM
+- M203 Command for Temp debugging
+
+*/
+
+#include <avr/pgmspace.h>
+#include <math.h>
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Sprinter.h"
+#include "speed_lookuptable.h"
+#include "arc_func.h"
+#include "heater.h"
#ifdef SDSUPPORT
#include "SdFat.h"
#endif
+
+#ifndef CRITICAL_SECTION_START
+#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
+#define CRITICAL_SECTION_END SREG = _sreg
+#endif //CRITICAL_SECTION_START
+
+void __cxa_pure_virtual(){};
+
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
@@ -17,6 +70,8 @@
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
+// G2 - CW ARC
+// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
@@ -32,7 +87,6 @@
// M114 - Display current position
//Custom M Codes
-// M80 - Turn on Power Supply
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
@@ -43,7 +97,9 @@
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
-// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
+// - <filename> - Delete file on sd card
+// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
+// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
@@ -52,26 +108,56 @@
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
+// M119 - Show Endstopper State
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
+// M203 - Set temperture monitor to Sx
+// M220 - set speed factor override percentage S:factor in percent
+// Debug feature / Testing the PID for Hotend
+// M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperatur while printing)
+// M602 - Reset Temp jitter from Extruder (min / max val) --> Dont use it while Printing
+// M603 - Show Free Ram
-//Stepper Movement Variables
+#define _VERSION_TEXT "1.2.20T / 27.01.2012"
+
+//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+float axis_steps_per_unit[] = _AXIS_STEP_PER_UNIT;
+
+float max_feedrate[] = _MAX_FEEDRATE;
+float homing_feedrate[] = _HOMING_FEEDRATE;
+bool axis_relative_modes[] = _AXIS_RELATIVE_MODES;
+
bool move_direction[NUM_AXIS];
unsigned long axis_previous_micros[NUM_AXIS];
-unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater;
+unsigned long previous_micros = 0;
unsigned long move_steps_to_take[NUM_AXIS];
+
#ifdef RAMP_ACCELERATION
-unsigned long axis_max_interval[NUM_AXIS];
-unsigned long axis_steps_per_sqr_second[NUM_AXIS];
-unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
-unsigned long max_interval;
-unsigned long steps_per_sqr_second, plateau_steps;
+ float acceleration = _ACCELERATION; // Normal acceleration mm/s^2
+ float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2
+ float max_xy_jerk = _MAX_XY_JERK;
+ float max_z_jerk = _MAX_Z_JERK;
+ float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND;
+ long max_acceleration_units_per_sq_second[] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
+ long max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves
+
+ unsigned long axis_max_interval[NUM_AXIS];
+ unsigned long axis_steps_per_sqr_second[NUM_AXIS];
+ unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
+ unsigned long max_interval;
+ unsigned long steps_per_sqr_second, plateau_steps;
#endif
+
+//adjustable feed faktor for online tuning printerspeed
+volatile int feedmultiply=100; //100->original / 200-> Faktor 2 / 50 -> Faktor 0.5
+int saved_feedmultiply;
+volatile bool feedmultiplychanged=false;
+
boolean acceleration_enabled = false, accelerating = false;
unsigned long interval;
float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
@@ -85,12 +171,18 @@ long gcode_N, gcode_LastN;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
long timediff = 0;
+
//experimental feedrate calc
-float d = 0;
-float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
+//float d = 0;
+//float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
+
+//For arc centerpont, send bei Command G2/G3
+float offset[3] = {0.0, 0.0, 0.0};
+
#ifdef STEP_DELAY_RATIO
long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
#endif
+
///oscillation reduction
#ifdef RAPID_OSCILLATION_REDUCTION
float cumm_wait_time_in_dir[NUM_AXIS]={0.0,0.0,0.0,0.0};
@@ -98,64 +190,43 @@ float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
float osc_wait_remainder = 0.0;
#endif
-// comm variables
+// comm variables and Commandbuffer
+// BUFSIZE is reduced from 8 to 5 to free more RAM for the PLANNER
#define MAX_CMD_SIZE 96
-#define BUFSIZE 8
+#define BUFSIZE 5 //8
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
+
+//Need 1kb Ram --> only work with Atmega1284
+#ifdef SD_FAST_XFER_AKTIV
+ char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1];
+ int lastxferchar;
+ long xferbytes;
+#endif
+
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
-int i = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the
-// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25
-// degree increments (i.e. 100=25 deg).
-
-int target_raw = 0;
-int target_temp = 0;
-int current_raw = 0;
-int target_bed_raw = 0;
-int current_bed_raw = 0;
-int tt = 0, bt = 0;
-#ifdef PIDTEMP
- int temp_iState = 0;
- int prev_temp = 0;
- int pTerm;
- int iTerm;
- int dTerm;
- //int output;
- int error;
- int heater_duty = 0;
- const int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
- const int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
-#endif
-#ifndef HEATER_CURRENT
- #define HEATER_CURRENT 255
-#endif
-#ifdef SMOOTHING
- uint32_t nma = 0;
-#endif
-#ifdef WATCHPERIOD
- int watch_raw = -1000;
- unsigned long watchmillis = 0;
-#endif
-#ifdef MINTEMP
- int minttemp = temp2analogh(MINTEMP);
-#endif
-#ifdef MAXTEMP
-int maxttemp = temp2analogh(MAXTEMP);
-#endif
-
+//Send Temperature in °C to Host
+int hotendtC = 0, bedtempC = 0;
+
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
+//Temp Montor for repetier
+unsigned char manage_monitor = 255;
+
+
+//------------------------------------------------
+//Init the SD card
+//------------------------------------------------
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
@@ -166,49 +237,41 @@ unsigned long stepper_inactive_time = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
- int16_t n;
- char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1];
- int lastxferchar;
- long xferbytes;
+ int16_t read_char_n;
- void initsd(){
+ void initsd()
+ {
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
+
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
- Serial.println("SD init fail");
+ showString(PSTR("SD init fail\r\n"));
}
else if (!volume.init(&card))
- Serial.println("volume.init failed");
+ showString(PSTR("volume.init failed\r\n"));
else if (!root.openRoot(&volume))
- Serial.println("openRoot failed");
- else
- sdactive = true;
+ showString(PSTR("openRoot failed\r\n"));
+ else{
+ sdactive = true;
+ print_disk_info();
+
+ #ifdef SDINITFILE
+ file.close();
+ if(file.open(&root, "init.g", O_READ)){
+ sdpos = 0;
+ filesize = file.fileSize();
+ sdmode = true;
+ }
+ #endif
+ }
+
#endif
}
- inline void write_command(char *buf){
- char* begin = buf;
- char* npos = 0;
- char* end = buf + strlen(buf) - 1;
-
- file.writeError = false;
- if((npos = strchr(buf, 'N')) != NULL){
- begin = strchr(npos, ' ') + 1;
- end = strchr(npos, '*') - 1;
- }
- end[1] = '\r';
- end[2] = '\n';
- end[3] = '\0';
- //Serial.println(begin);
- file.write(begin);
- if (file.writeError){
- Serial.println("error writing to file");
- }
- }
-
+ #ifdef SD_FAST_XFER_AKTIV
void fast_xfer()
{
char *pstr;
@@ -304,16 +367,131 @@ unsigned long stepper_inactive_time = 0;
file.sync();
file.close();
}
+ #endif
+
+
+ void print_disk_info(void)
+ {
+
+ // print the type of card
+ showString(PSTR("\nCard type: "));
+ switch(card.type())
+ {
+ case SD_CARD_TYPE_SD1:
+ showString(PSTR("SD1\r\n"));
+ break;
+ case SD_CARD_TYPE_SD2:
+ showString(PSTR("SD2\r\n"));
+ break;
+ case SD_CARD_TYPE_SDHC:
+ showString(PSTR("SDHC\r\n"));
+ break;
+ default:
+ showString(PSTR("Unknown\r\n"));
+ }
+
+ //uint64_t freeSpace = volume.clusterCount()*volume.blocksPerCluster()*512;
+ //uint64_t occupiedSpace = (card.cardSize()*512) - freeSpace;
+ // print the type and size of the first FAT-type volume
+ uint32_t volumesize;
+ showString(PSTR("\nVolume type is FAT"));
+ Serial.println(volume.fatType(), DEC);
+
+ volumesize = volume.blocksPerCluster(); // clusters are collections of blocks
+ volumesize *= volume.clusterCount(); // we'll have a lot of clusters
+ volumesize *= 512; // SD card blocks are always 512 bytes
+ volumesize /= 1024; //kbytes
+ volumesize /= 1024; //Mbytes
+ showString(PSTR("Volume size (Mbytes): "));
+ Serial.println(volumesize);
+
+ // list all files in the card with date and size
+ //root.ls(LS_R | LS_DATE | LS_SIZE);
+ }
+
+
+
+
+
+ inline void write_command(char *buf)
+ {
+ char* begin = buf;
+ char* npos = 0;
+ char* end = buf + strlen(buf) - 1;
+
+ file.writeError = false;
+
+ if((npos = strchr(buf, 'N')) != NULL)
+ {
+ begin = strchr(npos, ' ') + 1;
+ end = strchr(npos, '*') - 1;
+ }
+
+ end[1] = '\r';
+ end[2] = '\n';
+ end[3] = '\0';
+
+ //Serial.println(begin);
+ file.write(begin);
+
+ if (file.writeError)
+ {
+ showString(PSTR("error writing to file\r\n"));
+ }
+ }
+
#endif
+int FreeRam1(void)
+{
+ extern int __bss_end;
+ extern int* __brkval;
+ int free_memory;
+
+ if (reinterpret_cast<int>(__brkval) == 0)
+ {
+ // if no heap use from end of bss section
+ free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(&__bss_end);
+ }
+ else
+ {
+ // use from top of stack to heap
+ free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(__brkval);
+ }
+
+ return free_memory;
+}
+
+//------------------------------------------------
+//Print a String from Flash to Serial (save RAM)
+//------------------------------------------------
+void showString (PGM_P s)
+{
+ char c;
+
+ while ((c = pgm_read_byte(s++)) != 0)
+ Serial.print(c);
+}
+
+
+//------------------------------------------------
+// Init
+//------------------------------------------------
void setup()
{
+
Serial.begin(BAUDRATE);
- Serial.println("start");
- for(int i = 0; i < BUFSIZE; i++){
+ showString(PSTR("SprinterV2\r\n"));
+ showString(PSTR(_VERSION_TEXT));
+ showString(PSTR("\r\n"));
+ showString(PSTR("start\r\n"));
+
+ for(int i = 0; i < BUFSIZE; i++)
+ {
fromsd[i] = false;
}
+
//Initialize Dir Pins
@@ -348,7 +526,7 @@ void setup()
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
-
+
#ifdef CONTROLLERFAN_PIN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
@@ -424,7 +602,7 @@ void setup()
#if (LED_PIN > -1)
SET_OUTPUT(LED_PIN);
WRITE(LED_PIN,LOW);
- #endif
+ #endif
//Initialize Step Pins
#if (X_STEP_PIN > -1)
@@ -439,8 +617,13 @@ void setup()
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
+
#ifdef RAMP_ACCELERATION
- setup_acceleration();
+ for(int i=0; i < NUM_AXIS; i++){
+ axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
+ axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+// axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+ }
#endif
#ifdef HEATER_USES_MAX6675
@@ -464,125 +647,172 @@ void setup()
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif
+
+ showString(PSTR("SD Start\r\n"));
initsd();
#endif
+ #ifdef PID_SOFT_PWM
+ showString(PSTR("Soft PWM Init\r\n"));
+ init_Timer2_softpwm();
+ #endif
+
+ showString(PSTR("Planner Init\r\n"));
+ plan_init(); // Initialize planner;
+
+ showString(PSTR("Stepper Timer init\r\n"));
+ st_init(); // Initialize stepper
+
+ //Free Ram
+ showString(PSTR("Free Ram: "));
+ Serial.println(FreeRam1());
+
+ //Planner Buffer Size
+ showString(PSTR("Plan Buffer Size:"));
+ Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+ showString(PSTR(" / "));
+ Serial.println(BLOCK_BUFFER_SIZE);
}
+
+//------------------------------------------------
+//MAIN LOOP
+//------------------------------------------------
void loop()
{
- if(buflen<3)
- get_command();
+ if(buflen < (BUFSIZE-1))
+ get_command();
- if(buflen){
+ if(buflen)
+ {
#ifdef SDSUPPORT
- if(savetosd){
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){
+ if(savetosd)
+ {
+ if(strstr(cmdbuffer[bufindr],"M29") == NULL)
+ {
write_command(cmdbuffer[bufindr]);
- Serial.println("ok");
- }else{
+ showString(PSTR("ok\r\n"));
+ }
+ else
+ {
file.sync();
file.close();
savetosd = false;
- Serial.println("Done saving file.");
+ showString(PSTR("Done saving file.\r\n"));
}
- }else{
+ }
+ else
+ {
process_commands();
}
#else
process_commands();
#endif
+
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
- }
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
}
+
+ //check heater every n milliseconds
+ manage_heater();
+ manage_inactivity(1);
+}
+//------------------------------------------------
+//READ COMMAND FROM UART
+//------------------------------------------------
inline void get_command()
{
- while( Serial.available() > 0 && buflen < BUFSIZE) {
+ while( Serial.available() > 0 && buflen < BUFSIZE)
+ {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
+ if(!comment_mode)
+ {
+ fromsd[bufindw] = false;
+ if(strstr(cmdbuffer[bufindw], "N") != NULL)
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
+ gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
+ if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) )
+ {
+ showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:"));
+ Serial.println(gcode_LastN);
+ //Serial.println(gcode_N);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
- Serial.print("Error: checksum mismatch, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- Serial.print("Error: No Checksum with line number, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
+ if(strstr(cmdbuffer[bufindw], "*") != NULL)
+ {
+ byte checksum = 0;
+ byte count = 0;
+ while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
+ strchr_pointer = strchr(cmdbuffer[bufindw], '*');
+
+ if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum)
+ {
+ showString(PSTR("Error: checksum mismatch, Last Line:"));
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+ //if no errors, continue parsing
+ }
+ else
+ {
+ showString(PSTR("Error: No Checksum with line number, Last Line:"));
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- Serial.print("Error: No Line Number with checksum, Last Line:");
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
- case 0:
- case 1:
+ gcode_LastN = gcode_N;
+ //if no errors, continue parsing
+ }
+ else // if we don't receive 'N' but still see '*'
+ {
+ if((strstr(cmdbuffer[bufindw], "*") != NULL))
+ {
+ showString(PSTR("Error: No Line Number with checksum, Last Line:"));
+ Serial.println(gcode_LastN);
+ serial_count = 0;
+ return;
+ }
+ }
+
+ if((strstr(cmdbuffer[bufindw], "G") != NULL))
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
+ switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL))))
+ {
+ case 0:
+ case 1:
+ case 2: //G2
+ case 3: //G3 arc func
#ifdef SDSUPPORT
if(savetosd)
break;
#endif
- Serial.println("ok");
- break;
- default:
- break;
- }
-
- }
+ showString(PSTR("ok\r\n"));
+ //Serial.println("ok");
+ break;
+
+ default:
+ break;
+ }
+ }
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
-
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
@@ -594,35 +824,39 @@ inline void get_command()
}
}
#ifdef SDSUPPORT
-if(!sdmode || serial_count!=0){
+ if(!sdmode || serial_count!=0)
+ {
return;
-}
- while( filesize > sdpos && buflen < BUFSIZE) {
- n = file.read();
- serial_char = (char)n;
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
+ }
+ while( filesize > sdpos && buflen < BUFSIZE)
+ {
+ read_char_n = file.read();
+ serial_char = (char)read_char_n;
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || read_char_n == -1)
{
sdpos = file.curPosition();
- if(sdpos >= filesize){
+ if(sdpos >= filesize)
+ {
sdmode = false;
- Serial.println("Done printing file");
+ showString(PSTR("Done printing file\r\n"));
}
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = true;
- buflen += 1;
- bufindw = (bufindw + 1)%BUFSIZE;
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode)
+ {
+ fromsd[bufindw] = true;
+ buflen += 1;
+ bufindw = (bufindw + 1)%BUFSIZE;
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
-}
+ }
#endif
}
@@ -638,6 +872,9 @@ inline bool code_seen(char code)
return (strchr_pointer != NULL); //Return True if a character was found
}
+//------------------------------------------------
+// CHECK COMMAND AND CONVERT VALUES
+//------------------------------------------------
inline void process_commands()
{
unsigned long codenum; //throw away variable
@@ -658,6 +895,18 @@ inline void process_commands()
//ClearToSend();
return;
//break;
+ case 2: // G2 - CW ARC
+ get_arc_coordinates();
+ prepare_arc_move(true);
+ previous_millis_cmd = millis();
+ //break;
+ return;
+ case 3: // G3 - CCW ARC
+ get_arc_coordinates();
+ prepare_arc_move(false);
+ previous_millis_cmd = millis();
+ //break;
+ return;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
@@ -669,75 +918,112 @@ inline void process_commands()
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
- for(int i=0; i < NUM_AXIS; i++) {
+ saved_feedmultiply = feedmultiply;
+ feedmultiply = 100;
+
+ for(int i=0; i < NUM_AXIS; i++)
+ {
destination[i] = current_position[i];
}
feedrate = 0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
- if((home_all_axis) || (code_seen(axis_codes[0]))) {
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
- current_position[0] = 0;
- destination[0] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
- feedrate = homing_feedrate[0];
+ if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
+ {
+ if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1))
+ {
+ st_synchronize();
+ current_position[X_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
+ feedrate = homing_feedrate[X_AXIS];
prepare_move();
-
- current_position[0] = 0;
- destination[0] = -5 * X_HOME_DIR;
+
+ st_synchronize();
+ current_position[X_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move();
-
- destination[0] = 10 * X_HOME_DIR;
+
+ st_synchronize();
+ destination[X_AXIS] = 10 * X_HOME_DIR;
+ feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
-
- current_position[0] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
- destination[0] = current_position[0];
+ st_synchronize();
+
+ current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0;
}
}
-
- if((home_all_axis) || (code_seen(axis_codes[1]))) {
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
- current_position[1] = 0;
- destination[1] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- feedrate = homing_feedrate[1];
+ showString(PSTR("HOME X AXIS\r\n"));
+
+ if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
+ {
+ if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1))
+ {
+ current_position[Y_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+ feedrate = homing_feedrate[Y_AXIS];
prepare_move();
-
- current_position[1] = 0;
- destination[1] = -5 * Y_HOME_DIR;
+ st_synchronize();
+
+ current_position[Y_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move();
-
- destination[1] = 10 * Y_HOME_DIR;
+ st_synchronize();
+
+ destination[Y_AXIS] = 10 * Y_HOME_DIR;
+ feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
-
- current_position[1] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
- destination[1] = current_position[1];
+ st_synchronize();
+
+ current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0;
}
}
-
- if((home_all_axis) || (code_seen(axis_codes[2]))) {
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
- current_position[2] = 0;
- destination[2] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- feedrate = homing_feedrate[2];
+ showString(PSTR("HOME Y AXIS\r\n"));
+
+ if((home_all_axis) || (code_seen(axis_codes[Z_AXIS])))
+ {
+ if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1))
+ {
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+ feedrate = homing_feedrate[Z_AXIS];
prepare_move();
-
- current_position[2] = 0;
- destination[2] = -2 * Z_HOME_DIR;
+ st_synchronize();
+
+ current_position[Z_AXIS] = 0;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move();
-
- destination[2] = 10 * Z_HOME_DIR;
+ st_synchronize();
+
+ destination[Z_AXIS] = 3 * Z_HOME_DIR;
+ feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
-
- current_position[2] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
- destination[2] = current_position[2];
- feedrate = 0;
-
- }
- }
-
+ st_synchronize();
+
+ current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = current_position[Z_AXIS];
+ feedrate = 0;
+ }
+ }
+
+ showString(PSTR("HOME Z AXIS\r\n"));
+
feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+
previous_millis_cmd = millis();
break;
case 90: // G90
@@ -747,11 +1033,21 @@ inline void process_commands()
relative_mode = true;
break;
case 92: // G92
- for(int i=0; i < NUM_AXIS; i++) {
+ if(!code_seen(axis_codes[E_AXIS]))
+ st_synchronize();
+
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
-
+ default:
+ #ifdef SEND_WRONG_CMD_INFO
+ showString(PSTR("Unknown G-COM:"));
+ Serial.println(cmdbuffer[bufindr]);
+ #endif
+ break;
}
}
@@ -763,9 +1059,9 @@ inline void process_commands()
#ifdef SDSUPPORT
case 20: // M20 - list SD card
- Serial.println("Begin file list");
+ showString(PSTR("Begin file list\r\n"));
root.ls();
- Serial.println("End file list");
+ showString(PSTR("End file list\r\n"));
break;
case 21: // M21 - init SD card
sdmode = false;
@@ -776,72 +1072,88 @@ inline void process_commands()
sdactive = false;
break;
case 23: //M23 - Select file
- if(sdactive){
+ if(sdactive)
+ {
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
+
if(starpos!=NULL)
*(starpos-1)='\0';
- if (file.open(&root, strchr_pointer + 4, O_READ)) {
- Serial.print("File opened:");
+
+ if (file.open(&root, strchr_pointer + 4, O_READ))
+ {
+ showString(PSTR("File opened:"));
Serial.print(strchr_pointer + 4);
- Serial.print(" Size:");
+ showString(PSTR(" Size:"));
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
- Serial.println("File selected");
+ showString(PSTR("File selected\r\n"));
}
- else{
- Serial.println("file.open failed");
+ else
+ {
+ showString(PSTR("file.open failed\r\n"));
}
}
break;
case 24: //M24 - Start SD print
- if(sdactive){
+ if(sdactive)
+ {
sdmode = true;
}
break;
case 25: //M25 - Pause SD print
- if(sdmode){
+ if(sdmode)
+ {
sdmode = false;
}
break;
case 26: //M26 - Set SD index
- if(sdactive && code_seen('S')){
+ if(sdactive && code_seen('S'))
+ {
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
- if(sdactive){
- Serial.print("SD printing byte ");
+ if(sdactive)
+ {
+ showString(PSTR("SD printing byte "));
Serial.print(sdpos);
- Serial.print("/");
+ showString(PSTR("/"));
Serial.println(filesize);
- }else{
- Serial.println("Not SD printing");
+ }
+ else
+ {
+ showString(PSTR("Not SD printing\r\n"));
}
break;
- case 28: //M28 - Start SD write
- if(sdactive){
+ case 28: //M28 - Start SD write
+ if(sdactive)
+ {
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
+ if(starpos != NULL)
+ {
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+
+ if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
- Serial.print("open failed, File: ");
- Serial.print(strchr_pointer + 4);
- Serial.print(".");
- }else{
- savetosd = true;
- Serial.print("Writing to file: ");
- Serial.println(strchr_pointer + 4);
+ showString(PSTR("open failed, File: "));
+ Serial.print(strchr_pointer + 4);
+ showString(PSTR("."));
+ }
+ else
+ {
+ savetosd = true;
+ showString(PSTR("Writing to file: "));
+ Serial.println(strchr_pointer + 4);
}
}
break;
@@ -849,13 +1161,38 @@ inline void process_commands()
//processed in write to file routine above
//savetosd = false;
break;
- case 30: //M30 - fast SD transfer
+ #ifndef SD_FAST_XFER_AKTIV
+ case 30: // M30 filename - Delete file
+ if(sdactive)
+ {
+ sdmode = false;
+ file.close();
+
+ starpos = (strchr(strchr_pointer + 4,'*'));
+
+ if(starpos!=NULL)
+ *(starpos-1)='\0';
+
+ if(file.remove(&root, strchr_pointer + 4))
+ {
+ showString(PSTR("File deleted\r\n"));
+ }
+ else
+ {
+ showString(PSTR("Deletion failed\r\n"));
+ }
+ }
+ break;
+ #else
+ case 30: //M30 - fast SD transfer
fast_xfer();
break;
case 31: //M31 - high speed xfer capabilities
- Serial.print("RAW:");
+ showString(PSTR("RAW:"));
Serial.println(SD_FAST_XFER_CHUNK_SIZE);
break;
+ #endif
+
#endif
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
@@ -877,7 +1214,7 @@ inline void process_commands()
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
- analogWrite(pin_number, pin_status);
+ //analogWrite(pin_number, pin_status);
}
}
}
@@ -885,10 +1222,13 @@ inline void process_commands()
case 104: // M104
if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
#ifdef WATCHPERIOD
- if(target_raw > current_raw){
+ if(target_raw > current_raw)
+ {
watchmillis = max(1,millis());
watch_raw = current_raw;
- }else{
+ }
+ else
+ {
watchmillis = 0;
}
#endif
@@ -900,23 +1240,31 @@ inline void process_commands()
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
- tt = analog2temp(current_raw);
+ hotendtC = analog2temp(current_raw);
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
- bt = analog2tempBed(current_bed_raw);
+ bedtempC = analog2tempBed(current_bed_raw);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595
- Serial.print("ok T:");
- Serial.print(tt);
+ showString(PSTR("ok T:"));
+ Serial.print(hotendtC);
#ifdef PIDTEMP
- Serial.print(" @:");
+ showString(PSTR(" @:"));
Serial.print(heater_duty);
- Serial.print(",");
+ showString(PSTR(",P:"));
+ Serial.print(pTerm);
+ showString(PSTR(",I:"));
Serial.print(iTerm);
+ showString(PSTR(",D:"));
+ Serial.print(dTerm);
+ #ifdef AUTOTEMP
+ showString(PSTR(",AU:"));
+ Serial.print(autotemp_setpoint);
+ #endif
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
- Serial.print(" B:");
- Serial.println(bt);
+ showString(PSTR(" B:"));
+ Serial.println(bedtempC);
#else
Serial.println();
#endif
@@ -928,10 +1276,13 @@ inline void process_commands()
case 109: { // M109 - Wait for extruder heater to reach target.
if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
#ifdef WATCHPERIOD
- if(target_raw>current_raw){
+ if(target_raw>current_raw)
+ {
watchmillis = max(1,millis());
watch_raw = current_raw;
- }else{
+ }
+ else
+ {
watchmillis = 0;
}
#endif
@@ -952,7 +1303,7 @@ inline void process_commands()
#endif
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down
{
- Serial.print("T:");
+ showString(PSTR("T:"));
Serial.println( analog2temp(current_raw) );
codenum = millis();
}
@@ -973,33 +1324,36 @@ inline void process_commands()
#if TEMP_1_PIN > -1
if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
codenum = millis();
- while(current_bed_raw < target_bed_raw) {
+ while(current_bed_raw < target_bed_raw)
+ {
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
- tt=analog2temp(current_raw);
- Serial.print("T:");
- Serial.print( tt );
- Serial.print(" B:");
- Serial.println(analog2tempBed(current_bed_raw));
+ hotendtC=analog2temp(current_raw);
+ showString(PSTR("T:"));
+ Serial.print( hotendtC );
+ showString(PSTR(" B:"));
+ Serial.println( analog2tempBed(current_bed_raw) );
codenum = millis();
}
- manage_heater();
+ manage_heater();
}
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
- if (code_seen('S')){
+ if (code_seen('S'))
+ {
WRITE(FAN_PIN, HIGH);
- analogWrite(FAN_PIN, constrain(code_value(),0,255) );
+ //analogWrite(FAN_PIN, constrain(code_value(),0,255) );
}
- else {
+ else
+ {
WRITE(FAN_PIN, HIGH);
- analogWrite(FAN_PIN, 255 );
+ //analogWrite(FAN_PIN, 255 );
}
break;
case 107: //M107 Fan Off
- analogWrite(FAN_PIN, 0);
+ //analogWrite(FAN_PIN, 0);
WRITE(FAN_PIN, LOW);
break;
#endif
@@ -1018,82 +1372,153 @@ inline void process_commands()
axis_relative_modes[3] = true;
break;
case 84:
- if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; }
- else{ disable_x(); disable_y(); disable_z(); disable_e(); }
+ st_synchronize(); // wait for all movements to finish
+ if(code_seen('S'))
+ {
+ stepper_inactive_time = code_value() * 1000;
+ }
+ else
+ {
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
}
+ //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
+ // should also be used in setup() as well
#ifdef RAMP_ACCELERATION
- setup_acceleration();
+ long temp_max_intervals[NUM_AXIS];
+ for(int i=0; i < NUM_AXIS; i++)
+ {
+ axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
+ // all steps_per_unit related variables
+ }
#endif
-
break;
case 115: // M115
- Serial.print("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1 UUID:");
- Serial.println(uuid);
+ showString(PSTR("FIRMWARE_NAME: SprinterV2 PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n"));
+ //Serial.println(uuid);
+ showString(PSTR(_DEF_CHAR_UUID));
+ showString(PSTR("\r\n"));
break;
case 114: // M114
- Serial.print("X:");
+ showString(PSTR("X:"));
Serial.print(current_position[0]);
- Serial.print("Y:");
+ showString(PSTR("Y:"));
Serial.print(current_position[1]);
- Serial.print("Z:");
+ showString(PSTR("Z:"));
Serial.print(current_position[2]);
- Serial.print("E:");
+ showString(PSTR("E:"));
Serial.println(current_position[3]);
break;
case 119: // M119
+
#if (X_MIN_PIN > -1)
- Serial.print("x_min:");
- Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("x_min:"));
+ Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
- Serial.print("x_max:");
- Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("x_max:"));
+ Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
- Serial.print("y_min:");
- Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("y_min:"));
+ Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
- Serial.print("y_max:");
- Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("y_max:"));
+ Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
- Serial.print("z_min:");
- Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("z_min:"));
+ Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
- Serial.print("z_max:");
- Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("z_max:"));
+ Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
#endif
- Serial.println("");
+
+ showString(PSTR("\r\n"));
break;
#ifdef RAMP_ACCELERATION
//TODO: update for all axis, use for loop
case 201: // M201
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
case 202: // M202
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
+ case 203: // M203 Temperature monitor
+ if(code_seen('S')) manage_monitor = code_value();
+ if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed
+ break;
+ case 220: // M220 S<factor in percent>- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ if(feedmultiply < 20) feedmultiply = 20;
+ if(feedmultiply > 200) feedmultiply = 200;
+ feedmultiplychanged=true;
+ }
+ }
+ break;
+#ifdef DEBUG_HEATER_TEMP
+ case 601: // M601 show Extruder Temp jitter
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
+ if(current_raw_maxval > 0)
+ tt_maxval = analog2temp(current_raw_maxval);
+ if(current_raw_minval < 10000)
+ tt_minval = analog2temp(current_raw_minval);
+ #endif
+
+ showString(PSTR("Tmin:"));
+ Serial.print(tt_minval);
+ showString(PSTR(" / Tmax:"));
+ Serial.print(tt_maxval);
+ showString(PSTR(" "));
+ break;
+ case 602: // M602 reset Extruder Temp jitter
+ current_raw_minval = 32000;
+ current_raw_maxval = -32000;
+
+ showString(PSTR("T Minmax Reset "));
+ break;
+#endif
+ case 603: // M603 Free RAM
+ showString(PSTR("Free Ram: "));
+ Serial.println(FreeRam1());
+ break;
+ default:
+ #ifdef SEND_WRONG_CMD_INFO
+ showString(PSTR("Unknown M-COM:"));
+ Serial.println(cmdbuffer[bufindr]);
+ #endif
+ break;
+
}
}
else{
- Serial.println("Unknown command:");
+ showString(PSTR("Unknown command:\r\n"));
Serial.println(cmdbuffer[bufindr]);
}
@@ -1101,11 +1526,13 @@ inline void process_commands()
}
+
+
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
- Serial.print("Resend:");
+ showString(PSTR("Resend:"));
Serial.println(gcode_LastN + 1);
ClearToSend();
}
@@ -1117,782 +1544,1093 @@ void ClearToSend()
if(fromsd[bufindr])
return;
#endif
- Serial.println("ok");
+ showString(PSTR("ok\r\n"));
+ //Serial.println("ok");
}
inline void get_coordinates()
{
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
- if(code_seen('F')) {
+
+ if(code_seen('F'))
+ {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
+inline void get_arc_coordinates()
+{
+ get_coordinates();
+ if(code_seen('I')) offset[0] = code_value();
+ if(code_seen('J')) offset[1] = code_value();
+}
+
+
void prepare_move()
{
- //Find direction
- for(int i=0; i < NUM_AXIS; i++) {
- if(destination[i] >= current_position[i]) move_direction[i] = 1;
- else move_direction[i] = 0;
+ long help_feedrate = 0;
+
+ if (min_software_endstops)
+ {
+ if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
+ if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
+ if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
}
+
+ if (max_software_endstops)
+ {
+ if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
+ if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
+ if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
+ }
+
+ help_feedrate = ((long)feedrate*(long)feedmultiply);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0);
+
+ for(int i=0; i < NUM_AXIS; i++)
+ {
+ current_position[i] = destination[i];
+ }
+}
+
+
+
+void prepare_arc_move(char isclockwise)
+{
+
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+ long help_feedrate = 0;
+
+ help_feedrate = ((long)feedrate*(long)feedmultiply);
+ // Trace the arc
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise);
- if (min_software_endstops) {
- if (destination[0] < 0) destination[0] = 0.0;
- if (destination[1] < 0) destination[1] = 0.0;
- if (destination[2] < 0) destination[2] = 0.0;
+ // As far as the parser is concerned, the position is now == target. In reality the
+ // motion control system might still be processing the action and the real tool position
+ // in any intermediate location.
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ current_position[i] = destination[i];
}
+}
+
- if (max_software_endstops) {
- if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH;
- if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH;
- if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH;
+inline void kill()
+{
+ #if TEMP_0_PIN > -1
+ target_raw=0;
+ WRITE(HEATER_0_PIN,LOW);
+ #endif
+
+ #if TEMP_1_PIN > -1
+ target_bed_raw=0;
+ if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
+ #endif
+
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+
+}
+
+inline void manage_inactivity(byte debug)
+{
+ if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
+
+ if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time)
+ {
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
+ check_axes_activity();
+}
+
+
+
+
+// Planner with Interrupt for Stepper
+
+/*
+ Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
+
+ s == speed, a == acceleration, t == time, d == distance
+
+ Basic definitions:
+
+ Speed[s_, a_, t_] := s + (a*t)
+ Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
+
+ Distance to reach a specific speed with a constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
+ d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
+
+ Speed after a given distance of travel with constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
+ m -> Sqrt[2 a d + s^2]
+
+ DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
+
+ When to start braking (di) to reach a specified destionation speed (s2) after accelerating
+ from initial speed s1 without ever stopping at a plateau:
+
+ Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
+ di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
+
+ IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
+ */
+
+
+static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
+static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
+static volatile unsigned char block_buffer_tail; // Index of the block to process now
+
+// The current position of the tool in absolute steps
+static long position[4];
+
+#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
+
+// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
+// given acceleration:
+inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration)
+{
+ return(
+ (target_rate*target_rate-initial_rate*initial_rate)/
+ (2L*acceleration)
+ );
+}
+
+// This function gives you the point at which you must start braking (at the rate of -acceleration) if
+// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
+// a total travel of distance. This can be used to compute the intersection point between acceleration and
+// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
+
+inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance)
+{
+ return(
+ (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
+ (4*acceleration)
+ );
+}
+
+// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
+
+void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
+{
+ if(block->busy == true) return; // If block is busy then bail out.
+ float entry_factor = entry_speed / block->nominal_speed;
+ float exit_factor = exit_speed / block->nominal_speed;
+ long initial_rate = ceil(block->nominal_rate*entry_factor);
+ long final_rate = ceil(block->nominal_rate*exit_factor);
+#ifdef ADVANCE
+ long initial_advance = block->advance*entry_factor*entry_factor;
+ long final_advance = block->advance*exit_factor*exit_factor;
+#endif // ADVANCE
+
+ // Limit minimal step rate (Otherwise the timer will overflow.)
+ if(initial_rate <120) initial_rate=120;
+ if(final_rate < 120) final_rate=120;
+
+ // Calculate the acceleration steps
+ long acceleration = block->acceleration_st;
+ long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
+ long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
+ // Calculate the size of Plateau of Nominal Rate.
+ long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
+
+ // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
+ // have to use intersection_distance() to calculate when to abort acceleration and start braking
+ // in order to reach the final_rate exactly at the end of this block.
+ if (plateau_steps < 0) {
+ accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
+ plateau_steps = 0;
+ }
+
+ long decelerate_after = accelerate_steps+plateau_steps;
+ long acceleration_rate = (long)((float)acceleration * 8.388608);
+
+ CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
+ if(block->busy == false) { // Don't update variables if block is busy.
+ block->accelerate_until = accelerate_steps;
+ block->decelerate_after = decelerate_after;
+ block->acceleration_rate = acceleration_rate;
+ block->initial_rate = initial_rate;
+ block->final_rate = final_rate;
+#ifdef ADVANCE
+ block->initial_advance = initial_advance;
+ block->final_advance = final_advance;
+#endif ADVANCE
}
+ CRITICAL_SECTION_END;
+}
+
+// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
+// acceleration within the allotted distance.
+inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
+ return(
+ sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
+ );
+}
+
+// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
+// This method will calculate the junction jerk as the euclidean distance between the nominal
+// velocities of the respective blocks.
+inline float junction_jerk(block_t *before, block_t *after) {
+ return(sqrt(
+ pow((before->speed_x-after->speed_x), 2)+
+ pow((before->speed_y-after->speed_y), 2)));
+}
- for(int i=0; i < NUM_AXIS; i++) {
- axis_diff[i] = destination[i] - current_position[i];
- move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i];
+// Return the safe speed which is max_jerk/2, e.g. the
+// speed under which you cannot exceed max_jerk no matter what you do.
+float safe_speed(block_t *block) {
+ float safe_speed;
+ safe_speed = max_xy_jerk/2;
+ if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
+ if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
+ return safe_speed;
+}
+
+// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
+void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!current) {
+ return;
}
- if(feedrate < 10)
- feedrate = 10;
-
- //Feedrate calc based on XYZ travel distance
- float xy_d;
- //Check for cases where only one axis is moving - handle those without float sqrt
- if(abs(axis_diff[0]) > 0 && abs(axis_diff[1]) == 0 && abs(axis_diff[2])==0)
- d=abs(axis_diff[0]);
- else if(abs(axis_diff[0]) == 0 && abs(axis_diff[1]) > 0 && abs(axis_diff[2])==0)
- d=abs(axis_diff[1]);
- else if(abs(axis_diff[0]) == 0 && abs(axis_diff[1]) == 0 && abs(axis_diff[2])>0)
- d=abs(axis_diff[2]);
- //two or three XYZ axes moving
- else if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0) { //X or Y or both
- xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]);
- //check if Z involved - if so interpolate that too
- d = (abs(axis_diff[2])>0)?sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]):xy_d;
+
+ float entry_speed = current->nominal_speed;
+ float exit_factor;
+ float exit_speed;
+ if (next) {
+ exit_speed = next->entry_speed;
+ }
+ else {
+ exit_speed = safe_speed(current);
}
- else if(abs(axis_diff[3]) > 0)
- d = abs(axis_diff[3]);
- else{ //zero length move
- #ifdef DEBUG_PREPARE_MOVE
-
- log_message("_PREPARE_MOVE - No steps to take!");
-
- #endif
- return;
+
+ // Calculate the entry_factor for the current block.
+ if (previous) {
+ // Reduce speed so that junction_jerk is within the maximum allowed
+ float jerk = junction_jerk(previous, current);
+ if((previous->steps_x == 0) && (previous->steps_y == 0)) {
+ entry_speed = safe_speed(current);
}
- time_for_move = (d / (feedrate / 60000000.0) );
- //Check max feedrate for each axis is not violated, update time_for_move if necessary
- for(int i = 0; i < NUM_AXIS; i++) {
- if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) {
- time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0));
+ else if (jerk > max_xy_jerk) {
+ entry_speed = (max_xy_jerk/jerk) * entry_speed;
+ }
+ if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
+ entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
}
+ // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
+ if (entry_speed > exit_speed) {
+ float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
+ if (max_entry_speed < entry_speed) {
+ entry_speed = max_entry_speed;
+ }
+ }
+ }
+ else {
+ entry_speed = safe_speed(current);
}
+ // Store result
+ current->entry_speed = entry_speed;
+}
-#ifdef RAPID_OSCILLATION_REDUCTION //VERBOSE commenting for peer review. tested on multiple prints--works!
- for(int i=0; i < NUM_AXIS-1; i++) { //do for each axis, except for extruder (refer to the -1 value)
- if(prev_move_direction[i] != move_direction[i]){ //check if we've changed direcitons
- osc_wait_remainder=min_time_before_dir_change; //if we changed directions, then shit the bed! We better make sure to wait & chill out time before jerkin' over in the opposite direction!
- if(cumm_wait_time_in_dir[i]<min_time_before_dir_change){ //if so, check if we've sat @ the current position long enough for this axis
- if((min_time_before_dir_change-cumm_wait_time_in_dir[i])>osc_wait_remainder){ //if not, dont overwrite the remaining wait time if we already have to wait LONGER for a different axis
- osc_wait_remainder=min_time_before_dir_change-cumm_wait_time_in_dir[i];
- }
- }
- cumm_wait_time_in_dir[i] = 0.0; //we've changed directions! now that we've either set a wait period, or we had already waited long enough after a direction change, let's reset our wait variable for this axis
- }
- else{ //we haven't changed directions! so, lets make sure to increase our wait time for the time we have not been moving back on the same axis
- if(cumm_wait_time_in_dir[i]==0.0){
- cumm_wait_time_in_dir[i] = 0.001; //if the cumm wait variable = 0.0, that means we've just completed our first move after a dir change. we really haven't waited at all. so, let's increment the wait value insignifcant value so that we may proceed, but not hit this line again.
- }
- else{
- //Serial.print("It is will take [ESTIMATED] this many seconds to perform this move:"); Serial.println(time_for_move/1000000);
- cumm_wait_time_in_dir[i] = cumm_wait_time_in_dir[i] + time_for_move/1000; //increment the time we've waited in this axis
- }
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the reverse pass.
+void planner_reverse_pass() {
+ char block_index = block_buffer_head;
+ block_t *block[3] = { NULL, NULL, NULL };
+ while(block_index != block_buffer_tail) {
+ block_index--;
+ if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1;
+ block[2]= block[1];
+ block[1]= block[0];
+ block[0] = &block_buffer[block_index];
+ planner_reverse_pass_kernel(block[0], block[1], block[2]);
+ }
+ planner_reverse_pass_kernel(NULL, block[0], block[1]);
+}
+
+// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
+void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!current) {
+ return;
+ }
+ if(previous) {
+ // If the previous block is an acceleration block, but it is not long enough to
+ // complete the full speed change within the block, we need to adjust out entry
+ // speed accordingly. Remember current->entry_factor equals the exit factor of
+ // the previous block.
+ if(previous->entry_speed < current->entry_speed) {
+ float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
+ if (max_entry_speed < current->entry_speed) {
+ current->entry_speed = max_entry_speed;
}
}
+ }
+}
- //update prev_moves for next move. again, excluded extruder
- for(int i=0; i < NUM_AXIS-1; i++) {
- prev_move_direction[i]=move_direction[i];
- }
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the forward pass.
+void planner_forward_pass() {
+ char block_index = block_buffer_tail;
+ block_t *block[3] = {
+ NULL, NULL, NULL };
+
+ while(block_index != block_buffer_head) {
+ block[0] = block[1];
+ block[1] = block[2];
+ block[2] = &block_buffer[block_index];
+ planner_forward_pass_kernel(block[0],block[1],block[2]);
+ block_index = (block_index+1) & BLOCK_BUFFER_MASK;
+ }
+ planner_forward_pass_kernel(block[1], block[2], NULL);
+}
- //now WAIT if you are oscillating back & forth too fast in any given axis
- if(osc_wait_remainder>0.0){
- delay(osc_wait_remainder);
- osc_wait_remainder=0.0;
+// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
+// entry_factor for each junction. Must be called by planner_recalculate() after
+// updating the blocks.
+void planner_recalculate_trapezoids() {
+ char block_index = block_buffer_tail;
+ block_t *current;
+ block_t *next = NULL;
+ while(block_index != block_buffer_head) {
+ current = next;
+ next = &block_buffer[block_index];
+ if (current) {
+ calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
}
-#endif
+ block_index = (block_index+1) & BLOCK_BUFFER_MASK;
+ }
+ calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
+}
+
+// Recalculates the motion plan according to the following algorithm:
+//
+// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
+// so that:
+// a. The junction jerk is within the set limit
+// b. No speed reduction within one block requires faster deceleration than the one, true constant
+// acceleration.
+// 2. Go over every block in chronological order and dial down junction speed reduction values if
+// a. The speed increase within one block would require faster accelleration than the one, true
+// constant acceleration.
+//
+// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
+// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
+// the set limit. Finally it will:
+//
+// 3. Recalculate trapezoids for all blocks.
+
+void planner_recalculate() {
+ planner_reverse_pass();
+ planner_forward_pass();
+ planner_recalculate_trapezoids();
+}
- //Calculate the full speed stepper interval for each axis
- for(int i=0; i < NUM_AXIS; i++) {
- if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100;
+void plan_init() {
+ block_buffer_head = 0;
+ block_buffer_tail = 0;
+ memset(position, 0, sizeof(position)); // clear position
+}
+
+
+inline void plan_discard_current_block() {
+ if (block_buffer_head != block_buffer_tail) {
+ block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
}
+}
- #ifdef DEBUG_PREPARE_MOVE
- log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d);
- log_float("_PREPARE_MOVE - Move distance on the XYZ space", d);
- log_int("_PREPARE_MOVE - Commanded feedrate", feedrate);
- log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move);
- log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS);
- log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS);
- log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS);
- log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS);
- #endif
+inline block_t *plan_get_current_block() {
+ if (block_buffer_head == block_buffer_tail) {
+ return(NULL);
+ }
+ block_t *block = &block_buffer[block_buffer_tail];
+ block->busy = true;
+ return(block);
+}
- unsigned long move_steps[NUM_AXIS];
- for(int i=0; i < NUM_AXIS; i++)
- move_steps[i] = move_steps_to_take[i];
- linear_move(move_steps); // make the move
+void check_axes_activity() {
+ unsigned char x_active = 0;
+ unsigned char y_active = 0;
+ unsigned char z_active = 0;
+ unsigned char e_active = 0;
+ block_t *block;
+
+ if(block_buffer_tail != block_buffer_head) {
+ char block_index = block_buffer_tail;
+ while(block_index != block_buffer_head) {
+ block = &block_buffer[block_index];
+ if(block->steps_x != 0) x_active++;
+ if(block->steps_y != 0) y_active++;
+ if(block->steps_z != 0) z_active++;
+ if(block->steps_e != 0) e_active++;
+ block_index = (block_index+1) & BLOCK_BUFFER_MASK;
+ }
+ }
+ if((DISABLE_X) && (x_active == 0)) disable_x();
+ if((DISABLE_Y) && (y_active == 0)) disable_y();
+ if((DISABLE_Z) && (z_active == 0)) disable_z();
+ if((DISABLE_E) && (e_active == 0)) disable_e();
}
-inline void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1
-{
- //Determine direction of movement
- if (destination[0] > current_position[0]) WRITE(X_DIR_PIN,!INVERT_X_DIR);
- else WRITE(X_DIR_PIN,INVERT_X_DIR);
- if (destination[1] > current_position[1]) WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
- else WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- if (destination[2] > current_position[2]) WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
- else WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- if (destination[3] > current_position[3]) WRITE(E_DIR_PIN,!INVERT_E_DIR);
- else WRITE(E_DIR_PIN,INVERT_E_DIR);
- movereset:
- #if (X_MIN_PIN > -1)
- if(!move_direction[0]) if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MIN_PIN > -1)
- if(!move_direction[1]) if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) axis_steps_remaining[1]=0;
- #endif
- #if (Z_MIN_PIN > -1)
- if(!move_direction[2]) if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) axis_steps_remaining[2]=0;
- #endif
- #if (X_MAX_PIN > -1)
- if(move_direction[0]) if(READ(X_MAX_PIN) != X_ENDSTOP_INVERT) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MAX_PIN > -1)
- if(move_direction[1]) if(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT) axis_steps_remaining[1]=0;
- #endif
- # if(Z_MAX_PIN > -1)
- if(move_direction[2]) if(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT) axis_steps_remaining[2]=0;
- #endif
+// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
+// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
+// calculation the caller must also provide the physical length of the line in millimeters.
+void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
+
+ // The target position of the tool in absolute steps
+ // Calculate target position in absolute steps
+ long target[4];
+ target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+
+ // Calculate the buffer head after we push this byte
+ int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
+
+ // If the buffer is full: good! That means we are well ahead of the robot.
+ // Rest here until there is room in the buffer.
+ while(block_buffer_tail == next_buffer_head) {
+ manage_heater();
+ manage_inactivity(1);
+ }
+
+ //showString(PSTR("X:"));
+ //Serial.print(x);
+ //showString(PSTR(" Y:"));
+ //Serial.println(y);
+
+ // Prepare to set up new block
+ block_t *block = &block_buffer[block_buffer_head];
+ // Mark block as not busy (Not executed by the stepper interrupt)
+ block->busy = false;
+
+ // Number of steps for each axis
+ block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
+ block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
+ block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
+ block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
+ block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
+
+ // Bail if this is a zero-length block
+ if (block->step_event_count == 0) {
+ return;
+ };
- //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
- // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram,
- // but will reduce code size
-#ifdef DELAY_ENABLE
- if(axis_steps_remaining[0])
+
+ #ifdef DELAY_ENABLE
+ if(block->steps_x != 0)
{
enable_x();
delayMicroseconds(DELAY_ENABLE);
}
- if(axis_steps_remaining[1])
+ if(block->steps_y != 0)
{
enable_y();
delayMicroseconds(DELAY_ENABLE);
}
- if(axis_steps_remaining[2])
+ if(if(block->steps_z != 0))
{
enable_z();
delayMicroseconds(DELAY_ENABLE);
}
- if(axis_steps_remaining[3])
+ if(if(block->steps_e != 0))
{
enable_e();
delayMicroseconds(DELAY_ENABLE);
}
-#else
- if(axis_steps_remaining[0]) enable_x();
- if(axis_steps_remaining[1]) enable_y();
- if(axis_steps_remaining[2]) enable_z();
- if(axis_steps_remaining[3]) enable_e();
-#endif
-
- //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm.
- unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes
- long axis_error[NUM_AXIS];
- int primary_axis;
- if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1;
- else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0;
- else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2;
- else primary_axis = 3;
- unsigned long steps_remaining = delta[primary_axis];
- unsigned long steps_to_take = steps_remaining;
- for(int i=0; i < NUM_AXIS; i++){
- if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2;
- steps_taken[i]=0;
- }
- interval = axis_interval[primary_axis];
- bool is_print_move = delta[3] > 0;
- #ifdef DEBUG_BRESENHAM
- log_int("_BRESENHAM - Primary axis", primary_axis);
- log_int("_BRESENHAM - Primary axis full speed interval", interval);
- log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS);
- log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS);
- #endif
-
- //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it.
- #ifdef RAMP_ACCELERATION
- long max_speed_steps_per_second;
- long min_speed_steps_per_second;
- max_interval = axis_max_interval[primary_axis];
- #ifdef DEBUG_RAMP_ACCELERATION
- log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS);
- #endif
- unsigned long new_axis_max_intervals[NUM_AXIS];
- max_speed_steps_per_second = 100000000 / interval;
- min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted?
- //Calculate start speeds based on moving axes max start speed constraints.
- int slowest_start_axis = primary_axis;
- unsigned long slowest_start_axis_max_interval = max_interval;
- for(int i = 0; i < NUM_AXIS; i++)
- if (axis_steps_remaining[i] >0 &&
- i != primary_axis &&
- axis_max_interval[i] * axis_steps_remaining[i]/ axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) {
- slowest_start_axis = i;
- slowest_start_axis_max_interval = axis_max_interval[i];
- }
- for(int i = 0; i < NUM_AXIS; i++)
- if(axis_steps_remaining[i] >0) {
- // multiplying slowest_start_axis_max_interval by axis_steps_remaining[slowest_start_axis]
- // could lead to overflows when we have long distance moves (say, 390625*390625 > sizeof(unsigned long))
- float steps_remaining_ratio = (float) axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i];
- new_axis_max_intervals[i] = slowest_start_axis_max_interval * steps_remaining_ratio;
-
- if(i == primary_axis) {
- max_interval = new_axis_max_intervals[i];
- min_speed_steps_per_second = 100000000 / max_interval;
- }
- }
- //Calculate slowest axis plateau time
- float slowest_axis_plateau_time = 0;
- for(int i=0; i < NUM_AXIS ; i++) {
- if(axis_steps_remaining[i] > 0) {
- if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
- (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]);
- else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
- (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]);
- }
- }
- //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated
- steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time;
- plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time);
- #ifdef DEBUG_RAMP_ACCELERATION
- log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis);
- log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval);
- log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS);
- #endif
- #endif
+ #else
+ //enable active axes
+ if(block->steps_x != 0) enable_x();
+ if(block->steps_y != 0) enable_y();
+ if(block->steps_z != 0) enable_z();
+ if(block->steps_e != 0) enable_e();
+ #endif
+
+ float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
+ float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
+ float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
+ float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
+ block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
+
+ unsigned long microseconds;
+ microseconds = lround((block->millimeters/feed_rate)*1000000);
- unsigned long steps_done = 0;
- #ifdef RAMP_ACCELERATION
- plateau_steps *= 1.01; // This is to compensate we use discrete intervals
- acceleration_enabled = true;
- unsigned long full_interval = interval;
- if(interval > max_interval) acceleration_enabled = false;
- boolean decelerating = false;
- #endif
-
- unsigned long start_move_micros = micros();
- for(int i = 0; i < NUM_AXIS; i++) {
- axis_previous_micros[i] = start_move_micros * 100;
+ // Calculate speed in mm/minute for each axis
+ float multiplier = 60.0*1000000.0/microseconds;
+ block->speed_z = delta_z_mm * multiplier;
+ block->speed_x = delta_x_mm * multiplier;
+ block->speed_y = delta_y_mm * multiplier;
+ block->speed_e = delta_e_mm * multiplier;
+
+ // Limit speed per axis
+ float speed_factor = 1;
+ float tmp_speed_factor;
+ if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
+ speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
}
-
- #ifdef DISABLE_CHECK_DURING_TRAVEL
- //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's
- // consider this a print move and perform heat management during it
- if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true;
- //else, if the move is a retract, consider it as a travel move for the sake of this feature
- else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false;
- #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL
- log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move);
- #endif
- #endif
-
- #ifdef DEBUG_MOVE_TIME
- unsigned long startmove = micros();
- #endif
+ if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
+ tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
+ if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
+ tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
+ if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ if(abs(block->speed_e) > max_feedrate[E_AXIS]){
+ tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
+ if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
+ }
+ multiplier = multiplier * speed_factor;
+ block->speed_z = delta_z_mm * multiplier;
+ block->speed_x = delta_x_mm * multiplier;
+ block->speed_y = delta_y_mm * multiplier;
+ block->speed_e = delta_e_mm * multiplier;
+ block->nominal_speed = block->millimeters * multiplier;
+ block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
- //move until no more steps remain
- while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) {
- #if defined RAMP_ACCELERATION && defined DISABLE_CHECK_DURING_ACC
- if(!accelerating && !decelerating) {
- //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
- #ifdef DISABLE_CHECK_DURING_TRAVEL
- if(is_print_move)
- #endif
- manage_heater();
- }
- #else
- #ifdef DISABLE_CHECK_DURING_MOVE
- {} //Do nothing
- #else
- //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
- #ifdef DISABLE_CHECK_DURING_TRAVEL
- if(is_print_move)
- #endif
- manage_heater();
- #endif
- #endif
- #ifdef RAMP_ACCELERATION
- //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
- if (acceleration_enabled && steps_done == 0) {
- interval = max_interval;
- } else if (acceleration_enabled && steps_done <= plateau_steps) {
- long current_speed = (long) ((((long) steps_per_sqr_second) / 100)
- * ((micros() - start_move_micros) / 100)/100 + (long) min_speed_steps_per_second);
- interval = 100000000 / current_speed;
- if (interval < full_interval) {
- accelerating = false;
- interval = full_interval;
- }
- if (steps_done >= steps_to_take / 2) {
- plateau_steps = steps_done;
- max_speed_steps_per_second = 100000000 / interval;
- accelerating = false;
- }
- } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) {
- if (!accelerating) {
- start_move_micros = micros();
- accelerating = true;
- decelerating = true;
- }
- long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 100)
- * ((micros() - start_move_micros) / 100)/100));
- interval = 100000000 / current_speed;
- if (interval > max_interval)
- interval = max_interval;
- } else {
- //Else, we are just use the full speed interval as current interval
- interval = full_interval;
- accelerating = false;
- }
- #endif
+ if(block->nominal_rate < 120) block->nominal_rate = 120;
+ block->entry_speed = safe_speed(block);
- //If there are x or y steps remaining, perform Bresenham algorithm
- if(axis_steps_remaining[primary_axis]) {
- #if (X_MIN_PIN > -1)
- if(!move_direction[0]) if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) if(primary_axis==0) break; else if(axis_steps_remaining[0]) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MIN_PIN > -1)
- if(!move_direction[1]) if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) if(primary_axis==1) break; else if(axis_steps_remaining[1]) axis_steps_remaining[1]=0;
- #endif
- #if (X_MAX_PIN > -1)
- if(move_direction[0]) if(READ(X_MAX_PIN) != X_ENDSTOP_INVERT) if(primary_axis==0) break; else if(axis_steps_remaining[0]) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MAX_PIN > -1)
- if(move_direction[1]) if(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT) if(primary_axis==1) break; else if(axis_steps_remaining[1]) axis_steps_remaining[1]=0;
- #endif
- #if (Z_MIN_PIN > -1)
- if(!move_direction[2]) if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) if(primary_axis==2) break; else if(axis_steps_remaining[2]) axis_steps_remaining[2]=0;
- #endif
- #if (Z_MAX_PIN > -1)
- if(move_direction[2]) if(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT) if(primary_axis==2) break; else if(axis_steps_remaining[2]) axis_steps_remaining[2]=0;
- #endif
- timediff = micros() * 100 - axis_previous_micros[primary_axis];
- if(timediff<0){//check for overflow
- axis_previous_micros[primary_axis]=micros()*100;
- timediff=interval/2; //approximation
- }
- while(((unsigned long)timediff) >= interval && axis_steps_remaining[primary_axis] > 0) {
- steps_done++;
- steps_remaining--;
- axis_steps_remaining[primary_axis]--; timediff -= interval;
- do_step(primary_axis);
- axis_previous_micros[primary_axis] += interval;
- for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) {
- axis_error[i] = axis_error[i] - delta[i];
- if(axis_error[i] < 0) {
- do_step(i); axis_steps_remaining[i]--;
- axis_error[i] = axis_error[i] + delta[primary_axis];
- }
- }
- #ifdef STEP_DELAY_RATIO
- if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- }
+ // Compute the acceleration rate for the trapezoid generator.
+ float travel_per_step = block->millimeters/block->step_event_count;
+ if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
+ block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
}
- #ifdef DEBUG_MOVE_TIME
- log_ulong("_MOVE_TIME - This move took", micros()-startmove);
- #endif
-
- if(DISABLE_X) disable_x();
- if(DISABLE_Y) disable_y();
- if(DISABLE_Z) disable_z();
- if(DISABLE_E) disable_e();
+ else {
+ block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
+ // Limit acceleration per axis
+ if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
+ if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
+ if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
+ if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
+ }
+ block->acceleration = block->acceleration_st * travel_per_step;
- // Update current position partly based on direction, we probably can combine this with the direction code above...
- for(int i=0; i < NUM_AXIS; i++) {
- if (destination[i] > current_position[i]) current_position[i] = current_position[i] + steps_taken[i] / axis_steps_per_unit[i];
- else current_position[i] = current_position[i] - steps_taken[i] / axis_steps_per_unit[i];
+#ifdef ADVANCE
+ // Calculate advance rate
+ if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
+ block->advance_rate = 0;
+ block->advance = 0;
+ }
+ else {
+ long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
+ float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
+ (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
+ block->advance = advance;
+ if(acc_dist == 0) {
+ block->advance_rate = 0;
+ }
+ else {
+ block->advance_rate = advance / (float)acc_dist;
+ }
}
-}
-void do_step(int axis) {
- switch(axis){
- case 0:
- WRITE(X_STEP_PIN, HIGH);
- break;
- case 1:
- WRITE(Y_STEP_PIN, HIGH);
- break;
- case 2:
- WRITE(Z_STEP_PIN, HIGH);
- break;
- case 3:
- WRITE(E_STEP_PIN, HIGH);
- break;
+#endif // ADVANCE
+
+ // compute a preliminary conservative acceleration trapezoid
+ float safespeed = safe_speed(block);
+ calculate_trapezoid_for_block(block, safespeed, safespeed);
+
+ // Compute direction bits for this block
+ block->direction_bits = 0;
+ if (target[X_AXIS] < position[X_AXIS]) {
+ block->direction_bits |= (1<<X_AXIS);
+ }
+ if (target[Y_AXIS] < position[Y_AXIS]) {
+ block->direction_bits |= (1<<Y_AXIS);
+ }
+ if (target[Z_AXIS] < position[Z_AXIS]) {
+ block->direction_bits |= (1<<Z_AXIS);
+ }
+ if (target[E_AXIS] < position[E_AXIS]) {
+ block->direction_bits |= (1<<E_AXIS);
}
- steps_taken[axis]+=1;
- WRITE(X_STEP_PIN, LOW);
- WRITE(Y_STEP_PIN, LOW);
- WRITE(Z_STEP_PIN, LOW);
- WRITE(E_STEP_PIN, LOW);
-}
-#define HEAT_INTERVAL 250
-#ifdef HEATER_USES_MAX6675
-unsigned long max6675_previous_millis = 0;
-int max6675_temp = 2000;
+ // Move buffer head
+ block_buffer_head = next_buffer_head;
-int read_max6675()
-{
- if (millis() - max6675_previous_millis < HEAT_INTERVAL)
- return max6675_temp;
-
- max6675_previous_millis = millis();
+ // Update position
+ memcpy(position, target, sizeof(target)); // position[] = target[]
- max6675_temp = 0;
-
- #ifdef PRR
- PRR &= ~(1<<PRSPI);
- #elif defined PRR0
- PRR0 &= ~(1<<PRSPI);
+ planner_recalculate();
+ #ifdef AUTOTEMP
+ getHighESpeed();
#endif
+ st_wake_up();
+}
+
+void plan_set_position(float x, float y, float z, float e)
+{
+ position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+}
+
+#ifdef AUTOTEMP
+void getHighESpeed()
+{
+ static float oldt=0;
+ if(!autotemp_enabled)
+ return;
+ if((target_temp+2) < autotemp_min) //probably temperature set to zero.
+ return; //do nothing
- SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
-
- // enable TT_MAX6675
- WRITE(MAX6675_SS, 0);
+ float high=0;
+ uint8_t block_index = block_buffer_tail;
- // ensure 100ns delay - a bit extra is fine
- delay(1);
+ while(block_index != block_buffer_head)
+ {
+ float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
+ //se; units steps/sec;
+ if(se>high)
+ {
+ high=se;
+ }
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+
+ float t=autotemp_min+high*autotemp_factor;
- // read MSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp = SPDR;
- max6675_temp <<= 8;
+ if(t<autotemp_min)
+ t=autotemp_min;
- // read LSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp |= SPDR;
+ if(t>autotemp_max)
+ t=autotemp_max;
- // disable TT_MAX6675
- WRITE(MAX6675_SS, 1);
-
- if (max6675_temp & 4)
+ if(oldt>t)
{
- // thermocouple open
- max6675_temp = 2000;
- }
- else
- {
- max6675_temp = max6675_temp >> 3;
+ t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
}
+ oldt=t;
+ autotemp_setpoint = (int)t;
- return max6675_temp;
}
#endif
-#ifdef CONTROLLERFAN_PIN
-unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
-unsigned long lastMotorCheck = 0;
-void controllerFan()
-{
- if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
- {
- lastMotorCheck = millis();
-
- if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled...
- {
- lastMotor = millis(); //... set time to NOW so the fan will turn on
- }
-
- if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
- {
- WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
- }
- else
- {
- WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
- }
- }
+
+
+// Stepper
+
+// intRes = intIn1 * intIn2 >> 16
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 24 bit result
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %A1, %A2 \n\t" \
+"add %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r0 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (charIn1), \
+"d" (intIn2) \
+: \
+"r26" \
+)
+
+// intRes = longIn1 * longIn2 >> 24
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 48bit result
+#define MultiU24X24toH16(intRes, longIn1, longIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"mov r27, r1 \n\t" \
+"mul %B1, %C2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %C1, %C2 \n\t" \
+"add %B0, r0 \n\t" \
+"mul %C1, %B2 \n\t" \
+"add %A0, r0 \n\t" \
+"adc %B0, r1 \n\t" \
+"mul %A1, %C2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %B2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %C1, %A2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %A2 \n\t" \
+"add r27, r1 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r27 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (longIn1), \
+"d" (longIn2) \
+: \
+"r26" , "r27" \
+)
+
+// Some useful constants
+
+#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
+#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
+
+static block_t *current_block; // A pointer to the block currently being traced
+
+// Variables used by The Stepper Driver Interrupt
+static unsigned char out_bits; // The next stepping-bits to be output
+static long counter_x, // Counter variables for the bresenham line tracer
+ counter_y,
+ counter_z,
+ counter_e;
+static unsigned long step_events_completed; // The number of step events executed in the current block
+static long advance_rate, advance, final_advance = 0;
+static short old_advance = 0;
+static short e_steps;
+static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
+static long acceleration_time, deceleration_time;
+static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
+static unsigned short acc_step_rate; // needed for deccelaration start point
+
+
+
+// __________________________
+// /| |\ _________________ ^
+// / | | \ /| |\ |
+// / | | \ / | | \ s
+// / | | | | | \ p
+// / | | | | | \ e
+// +-----+------------------------+---+--+---------------+----+ e
+// | BLOCK 1 | BLOCK 2 | d
+//
+// time ----->
+//
+// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+// first block->accelerate_until step_events_completed, then keeps going at constant speed until
+// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+// The slope of acceleration is calculated with the leib ramp alghorithm.
+
+void st_wake_up()
+{
+ // TCNT1 = 0;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
}
-#endif
-void manage_heater()
+inline unsigned short calc_timer(unsigned short step_rate)
{
- if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
- return;
- previous_millis_heater = millis();
- #ifdef HEATER_USES_THERMISTOR
- current_raw = analogRead(TEMP_0_PIN);
- #ifdef DEBUG_HEAT_MGMT
- log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
- log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
- #endif
- // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
- // this switches it up so that the reading appears lower than target for the control logic.
- current_raw = 1023 - current_raw;
- #elif defined HEATER_USES_AD595
- current_raw = analogRead(TEMP_0_PIN);
- #elif defined HEATER_USES_MAX6675
- current_raw = read_max6675();
- #endif
- #ifdef SMOOTHING
- if (!nma) nma = SMOOTHFACTOR * current_raw;
- nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
- current_raw = nma / SMOOTHFACTOR;
- #endif
- #ifdef WATCHPERIOD
- if(watchmillis && millis() - watchmillis > WATCHPERIOD){
- if(watch_raw + 1 >= current_raw){
- target_temp = target_raw = 0;
- WRITE(HEATER_0_PIN,LOW);
- analogWrite(HEATER_0_PIN, 0);
- #if LED_PIN>-1
- WRITE(LED_PIN,LOW);
- #endif
- }else{
- watchmillis = 0;
- }
- }
- #endif
- #ifdef MINTEMP
- if(current_raw <= minttemp)
- target_temp = target_raw = 0;
- #endif
- #ifdef MAXTEMP
- if(current_raw >= maxttemp) {
- target_temp = target_raw = 0;
- #if (ALARM_PIN > -1)
- WRITE(ALARM_PIN,HIGH);
- #endif
- }
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595)
- #ifdef PIDTEMP
- int current_temp = analog2temp(current_raw);
- error = target_temp - current_temp;
- int delta_temp = current_temp - prev_temp;
- prev_temp = current_temp;
- pTerm = ((long)PID_PGAIN * error) / 256;
- const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT);
- heater_duty = H0 + pTerm;
- if(error < 20){
- temp_iState += error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = ((long)PID_IGAIN * temp_iState) / 256;
- heater_duty += iTerm;
- }
- int prev_error = abs(target_temp - prev_temp);
- int log3 = 1; // discrete logarithm base 3, plus 1
- if(prev_error > 81){ prev_error /= 81; log3 += 4; }
- if(prev_error > 9){ prev_error /= 9; log3 += 2; }
- if(prev_error > 3){ prev_error /= 3; log3 ++; }
- dTerm = ((long)PID_DGAIN * delta_temp) / (256*log3);
- heater_duty += dTerm;
- heater_duty = constrain(heater_duty, 0, HEATER_CURRENT);
- analogWrite(HEATER_0_PIN, heater_duty);
- #if LED_PIN>-1
- analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255));
- #endif
- #else
- if(current_raw >= target_raw)
- {
- WRITE(HEATER_0_PIN,LOW);
- analogWrite(HEATER_0_PIN, 0);
- #if LED_PIN>-1
- WRITE(LED_PIN,LOW);
- #endif
- }
- else
- {
- WRITE(HEATER_0_PIN,HIGH);
- analogWrite(HEATER_0_PIN, HEATER_CURRENT);
- #if LED_PIN > -1
- WRITE(LED_PIN,HIGH);
- #endif
- }
- #endif
- #endif
-
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
- return;
- previous_millis_bed_heater = millis();
- #ifndef TEMP_1_PIN
- return;
- #endif
- #if TEMP_1_PIN == -1
- return;
- #else
+ unsigned short timer;
+ if(step_rate < 32) step_rate = 32;
+ step_rate -= 32; // Correct for minimal speed
- #ifdef BED_USES_THERMISTOR
+ if(step_rate >= (8*256))
+ { // higher step rate
+ unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
+ unsigned char tmp_step_rate = (step_rate & 0x00ff);
+ unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
+ MultiU16X8toH16(timer, tmp_step_rate, gain);
+ timer = (unsigned short)pgm_read_word_near(table_address) - timer;
+ }
+ else
+ { // lower step rates
+ unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate)>>1) & 0xfffc;
+ timer = (unsigned short)pgm_read_word_near(table_address);
+ timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
+ }
- current_bed_raw = analogRead(TEMP_1_PIN);
- #ifdef DEBUG_HEAT_MGMT
- log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
- log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
- #endif
+ if(timer < 100) timer = 100;
- // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
- // this switches it up so that the reading appears lower than target for the control logic.
- current_bed_raw = 1023 - current_bed_raw;
- #elif defined BED_USES_AD595
- current_bed_raw = analogRead(TEMP_1_PIN);
+ return timer;
+}
+// Initializes the trapezoid generator from the current block. Called whenever a new
+// block begins.
+inline void trapezoid_generator_reset()
+{
+ accelerate_until = current_block->accelerate_until;
+ decelerate_after = current_block->decelerate_after;
+ acceleration_rate = current_block->acceleration_rate;
+ initial_rate = current_block->initial_rate;
+ final_rate = current_block->final_rate;
+ nominal_rate = current_block->nominal_rate;
+
+ #ifdef ADVANCE
+ advance = current_block->initial_advance;
+ final_advance = current_block->final_advance;
+ advance_rate = current_block->advance_rate;
#endif
+ deceleration_time = 0;
- #ifdef MINTEMP
- if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp)
- #else
- if(current_bed_raw >= target_bed_raw)
- #endif
- {
- WRITE(HEATER_1_PIN,LOW);
- }
- else
- {
- WRITE(HEATER_1_PIN,HIGH);
- }
- #endif
-
-#ifdef CONTROLLERFAN_PIN
- controllerFan(); //Check if fan should be turned on to cool stepper drivers down
-#endif
+ // step_rate to timer interval
+ acc_step_rate = initial_rate;
+ acceleration_time = calc_timer(acc_step_rate);
+ OCR1A = acceleration_time;
}
-#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
-int temp2analog_thermistor(int celsius, const short table[][2], int numtemps) {
- int raw = 0;
- byte i;
-
- for (i=1; i<numtemps; i++)
- {
- if (table[i][1] < celsius)
- {
- raw = table[i-1][0] +
- (celsius - table[i-1][1]) *
- (table[i][0] - table[i-1][0]) /
- (table[i][1] - table[i-1][1]);
-
- break;
+// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
+// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
+ISR(TIMER1_COMPA_vect)
+{
+ if(busy){ /*Serial.println("BUSY")*/;
+ return;
+ } // The busy-flag is used to avoid reentering this interrupt
+
+ busy = true;
+ sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
+
+ // If there is no current block, attempt to pop one from the buffer
+ if (current_block == NULL) {
+ // Anything in the buffer?
+ current_block = plan_get_current_block();
+ if (current_block != NULL) {
+ trapezoid_generator_reset();
+ counter_x = -(current_block->step_event_count >> 1);
+ counter_y = counter_x;
+ counter_z = counter_x;
+ counter_e = counter_x;
+ step_events_completed = 0;
+ e_steps = 0;
+ }
+ else {
+ DISABLE_STEPPER_DRIVER_INTERRUPT();
+ }
+ }
+
+ if (current_block != NULL) {
+ // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
+ out_bits = current_block->direction_bits;
+
+#ifdef ADVANCE
+ // Calculate E early.
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ counter_e -= current_block->step_event_count;
+ if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
+ CRITICAL_SECTION_START;
+ e_steps--;
+ CRITICAL_SECTION_END;
+ }
+ else {
+ CRITICAL_SECTION_START;
+ e_steps++;
+ CRITICAL_SECTION_END;
+ }
+ }
+ // Do E steps + advance steps
+ CRITICAL_SECTION_START;
+ e_steps += ((advance >> 16) - old_advance);
+ CRITICAL_SECTION_END;
+ old_advance = advance >> 16;
+#endif //ADVANCE
+
+ // Set direction en check limit switches
+ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
+ WRITE(X_DIR_PIN, INVERT_X_DIR);
+ if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) {
+ step_events_completed = current_block->step_event_count;
}
}
+ else // +direction
+ WRITE(X_DIR_PIN,!INVERT_X_DIR);
- // Overflow: Set to last value in the table
- if (i == numtemps) raw = table[i-1][0];
-
- return 1023 - raw;
-}
-#endif
-
-#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
-int temp2analog_ad595(int celsius) {
- return celsius * 1024 / (500);
-}
-#endif
-
-#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
-int temp2analog_max6675(int celsius) {
- return celsius * 4;
-}
-#endif
+ if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
+ WRITE(Y_DIR_PIN,INVERT_Y_DIR);
+ if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) {
+ step_events_completed = current_block->step_event_count;
+ }
+ }
+ else // +direction
+ WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
-#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
-int analog2temp_thermistor(int raw,const short table[][2], int numtemps) {
- int celsius = 0;
- byte i;
-
- raw = 1023 - raw;
+ if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+ if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) {
+ step_events_completed = current_block->step_event_count;
+ }
+ }
+ else // +direction
+ WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
+
+#ifndef ADVANCE
+ if ((out_bits & (1<<E_AXIS)) != 0) // -direction
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ else // +direction
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+#endif //!ADVANCE
+
+ counter_x += current_block->steps_x;
+ if (counter_x > 0) {
+ WRITE(X_STEP_PIN, HIGH);
+ counter_x -= current_block->step_event_count;
+ WRITE(X_STEP_PIN, LOW);
+ }
- for (i=1; i<numtemps; i++)
- {
- if (table[i][0] > raw)
- {
- celsius = table[i-1][1] +
- (raw - table[i-1][0]) *
- (table[i][1] - table[i-1][1]) /
- (table[i][0] - table[i-1][0]);
+ counter_y += current_block->steps_y;
+ if (counter_y > 0) {
+ WRITE(Y_STEP_PIN, HIGH);
+ counter_y -= current_block->step_event_count;
+ WRITE(Y_STEP_PIN, LOW);
+ }
- break;
- }
+ counter_z += current_block->steps_z;
+ if (counter_z > 0) {
+ WRITE(Z_STEP_PIN, HIGH);
+ counter_z -= current_block->step_event_count;
+ WRITE(Z_STEP_PIN, LOW);
}
- // Overflow: Set to last value in the table
- if (i == numtemps) celsius = table[i-1][1];
+#ifndef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ WRITE(E_STEP_PIN, HIGH);
+ counter_e -= current_block->step_event_count;
+ WRITE(E_STEP_PIN, LOW);
+ }
+#endif //!ADVANCE
+
+ // Calculare new timer value
+ unsigned short timer;
+ unsigned short step_rate;
+ if (step_events_completed < accelerate_until) {
+ MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
+ acc_step_rate += initial_rate;
+
+ // upper limit
+ if(acc_step_rate > nominal_rate)
+ acc_step_rate = nominal_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(acc_step_rate);
+ advance += advance_rate;
+ acceleration_time += timer;
+ OCR1A = timer;
+ }
+ else if (step_events_completed >= decelerate_after) {
+ MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
+
+ if(step_rate > acc_step_rate) { // Check step_rate stays positive
+ step_rate = final_rate;
+ }
+ else {
+ step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
+ }
- return celsius;
+ // lower limit
+ if(step_rate < final_rate)
+ step_rate = final_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(step_rate);
+#ifdef ADVANCE
+ advance -= advance_rate;
+ if(advance < final_advance)
+ advance = final_advance;
+#endif //ADVANCE
+ deceleration_time += timer;
+ OCR1A = timer;
+ }
+ // If current block is finished, reset pointer
+ step_events_completed += 1;
+ if (step_events_completed >= current_block->step_event_count) {
+ current_block = NULL;
+ plan_discard_current_block();
+ }
+ }
+ busy=false;
}
-#endif
-#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
-int analog2temp_ad595(int raw) {
- return raw * 500 / 1024;
-}
-#endif
+#ifdef ADVANCE
-#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
-int analog2temp_max6675(int raw) {
- return raw / 4;
+unsigned char old_OCR0A;
+// Timer interrupt for E. e_steps is set in the main routine;
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPA_vect)
+{
+ // Critical section needed because Timer 1 interrupt has higher priority.
+ // The pin set functions are placed on trategic position to comply with the stepper driver timing.
+ WRITE(E_STEP_PIN, LOW);
+ // Set E direction (Depends on E direction + advance)
+ if (e_steps < 0) {
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ e_steps++;
+ WRITE(E_STEP_PIN, HIGH);
+ }
+ if (e_steps > 0) {
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+ e_steps--;
+ WRITE(E_STEP_PIN, HIGH);
+ }
+ old_OCR0A += 25; // 10kHz interrupt
+ OCR0A = old_OCR0A;
}
-#endif
+#endif // ADVANCE
-inline void kill()
+void st_init()
{
- #if TEMP_0_PIN > -1
- target_raw=0;
- WRITE(HEATER_0_PIN,LOW);
- #endif
- #if TEMP_1_PIN > -1
- target_bed_raw=0;
- if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
- #endif
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
-
+ // waveform generation = 0100 = CTC
+ TCCR1B &= ~(1<<WGM13);
+ TCCR1B |= (1<<WGM12);
+ TCCR1A &= ~(1<<WGM11);
+ TCCR1A &= ~(1<<WGM10);
+
+ // output mode = 00 (disconnected)
+ TCCR1A &= ~(3<<COM1A0);
+ TCCR1A &= ~(3<<COM1B0);
+ TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
+
+ OCR1A = 0x4000;
+ DISABLE_STEPPER_DRIVER_INTERRUPT();
+
+#ifdef ADVANCE
+ e_steps = 0;
+ TIMSK0 |= (1<<OCIE0A);
+#endif //ADVANCE
+ sei();
}
-inline void manage_inactivity(byte debug) {
-if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
-if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); }
+// Block until all buffered steps are executed
+void st_synchronize()
+{
+ while(plan_get_current_block()) {
+ manage_heater();
+ manage_inactivity(1);
+ }
}
-#ifdef RAMP_ACCELERATION
-void setup_acceleration() {
- for (int i=0; i < NUM_AXIS; i++) {
- axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
-}
-#endif
#ifdef DEBUG
void log_message(char* message) {
diff --git a/Sprinter/arc_func.cpp b/Sprinter/arc_func.cpp
new file mode 100644
index 0000000..03b6d1f
--- /dev/null
+++ b/Sprinter/arc_func.cpp
@@ -0,0 +1,143 @@
+/*
+ arc_func.c - high level interface for issuing motion commands
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+ Copyright (c) 2011 Sungeun K. Jeon
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include <avr/pgmspace.h>
+#include <math.h>
+
+#include "Configuration.h"
+#include "Sprinter.h"
+
+// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
+// segment is configured in settings.mm_per_arc_segment.
+void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
+ uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise)
+{
+ // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
+ // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
+ float center_axis0 = position[axis_0] + offset[axis_0];
+ float center_axis1 = position[axis_1] + offset[axis_1];
+ float linear_travel = target[axis_linear] - position[axis_linear];
+ float extruder_travel = target[E_AXIS] - position[E_AXIS];
+ float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
+ float r_axis1 = -offset[axis_1];
+ float rt_axis0 = target[axis_0] - center_axis0;
+ float rt_axis1 = target[axis_1] - center_axis1;
+
+ // CCW angle between position and target from circle center. Only one atan2() trig computation required.
+ float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
+ if (angular_travel < 0) { angular_travel += 2*M_PI; }
+ if (isclockwise) { angular_travel -= 2*M_PI; }
+
+ float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
+ if (millimeters_of_travel == 0.0) { return; }
+ uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
+ /*
+ // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
+ // by a number of discrete segments. The inverse feed_rate should be correct for the sum of
+ // all segments.
+ if (invert_feed_rate) { feed_rate *= segments; }
+ */
+ float theta_per_segment = angular_travel/segments;
+ float linear_per_segment = linear_travel/segments;
+ float extruder_per_segment = extruder_travel/segments;
+
+ /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+ and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+ r_T = [cos(phi) -sin(phi);
+ sin(phi) cos(phi] * r ;
+
+ For arc generation, the center of the circle is the axis of rotation and the radius vector is
+ defined from the circle center to the initial position. Each line segment is formed by successive
+ vector rotations. This requires only two cos() and sin() computations to form the rotation
+ matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+ all double numbers are single precision on the Arduino. (True double precision will not have
+ round off issues for CNC applications.) Single precision error can accumulate to be greater than
+ tool precision in some cases. Therefore, arc path correction is implemented.
+
+ Small angle approximation may be used to reduce computation overhead further. This approximation
+ holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
+ theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
+ to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
+ numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
+ issue for CNC machines with the single precision Arduino calculations.
+
+ This approximation also allows mc_arc to immediately insert a line segment into the planner
+ without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
+ a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
+ This is important when there are successive arc motions.
+ */
+ // Vector rotation matrix values
+ float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
+ float sin_T = theta_per_segment;
+
+ float arc_target[4];
+ float sin_Ti;
+ float cos_Ti;
+ float r_axisi;
+ uint16_t i;
+ int8_t count = 0;
+
+ // Initialize the linear axis
+ arc_target[axis_linear] = position[axis_linear];
+
+ // Initialize the extruder axis
+ arc_target[E_AXIS] = position[E_AXIS];
+
+ for (i = 1; i<segments; i++)
+ { // Increment (segments-1)
+
+ if (count < N_ARC_CORRECTION) //25 pieces
+ {
+ // Apply vector rotation matrix
+ r_axisi = r_axis0*sin_T + r_axis1*cos_T;
+ r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
+ r_axis1 = r_axisi;
+ count++;
+ }
+ else
+ {
+ // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
+ // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
+ cos_Ti = cos(i*theta_per_segment);
+ sin_Ti = sin(i*theta_per_segment);
+ r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
+ r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
+ count = 0;
+ }
+
+ // Update arc_target location
+ arc_target[axis_0] = center_axis0 + r_axis0;
+ arc_target[axis_1] = center_axis1 + r_axis1;
+ arc_target[axis_linear] += linear_per_segment;
+ arc_target[E_AXIS] += extruder_per_segment;
+
+ //showString(PSTR("sec:"));
+ //Serial.println(i);
+ plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate);
+
+ }
+ // Ensure last segment arrives at target location.
+ //showString(PSTR("Last sec\r\n"));
+ plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate);
+
+ // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
+}
+
diff --git a/Sprinter/arc_func.h b/Sprinter/arc_func.h
new file mode 100644
index 0000000..03ecd9d
--- /dev/null
+++ b/Sprinter/arc_func.h
@@ -0,0 +1,32 @@
+/*
+ arc_func.h - high level interface for issuing motion commands
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+ Copyright (c) 2011 Sungeun K. Jeon
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef arc_func_h
+#define arc_func_h
+
+// Execute an arc in offset mode format. position == current xyz, target == target xyz,
+// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
+// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
+// for vector transformation direction.
+void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
+ unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise);
+
+#endif
diff --git a/Sprinter/heater.cpp b/Sprinter/heater.cpp
new file mode 100644
index 0000000..8739103
--- /dev/null
+++ b/Sprinter/heater.cpp
@@ -0,0 +1,574 @@
+/*
+ Reprap heater funtions based on Sprinter
+
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+/*
+ This softwarepart for Heatercontrol is based on Sprinter
+ big thanks to kliment (https://github.com/kliment/Sprinter)
+*/
+
+
+#include <avr/pgmspace.h>
+
+#include "heater.h"
+#include "fastio.h"
+#include "pins.h"
+#include "Sprinter.h"
+
+
+
+// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the
+// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25
+// degree increments (i.e. 100=25 deg).
+
+int target_raw = 0;
+int target_temp = 0;
+int current_raw = 0;
+int current_raw_maxval = -32000;
+int current_raw_minval = 32000;
+int tt_maxval;
+int tt_minval;
+int target_bed_raw = 0;
+int current_bed_raw = 0;
+unsigned long previous_millis_heater, previous_millis_bed_heater, previous_millis_monitor;
+
+#ifdef PIDTEMP
+ int g_heater_pwm_val = 0;
+
+ unsigned char PWM_off_time = 0;
+ unsigned char PWM_out_on = 0;
+
+ int temp_iState = 0;
+ int temp_dState = 0;
+ int prev_temp = 0;
+ int pTerm;
+ int iTerm;
+ int dTerm;
+ //int output;
+ int error;
+ int heater_duty = 0;
+ const int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
+ const int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
+#endif
+
+
+#ifdef AUTOTEMP
+ float autotemp_max=AUTO_TEMP_MAX;
+ float autotemp_min=AUTO_TEMP_MIN;
+ float autotemp_factor=AUTO_TEMP_FACTOR;
+ int autotemp_setpoint=0;
+ bool autotemp_enabled=true;
+#endif
+
+#ifndef HEATER_CURRENT
+ #define HEATER_CURRENT 255
+#endif
+
+#ifdef SMOOTHING
+ uint32_t nma = 0;
+#endif
+
+#ifdef WATCHPERIOD
+ int watch_raw = -1000;
+ unsigned long watchmillis = 0;
+#endif
+
+#ifdef MINTEMP
+ int minttemp = temp2analogh(MINTEMP);
+#endif
+
+#ifdef MAXTEMP
+ int maxttemp = temp2analogh(MAXTEMP);
+#endif
+
+
+
+#define HEAT_INTERVAL 250
+#ifdef HEATER_USES_MAX6675
+unsigned long max6675_previous_millis = 0;
+int max6675_temp = 2000;
+
+int read_max6675()
+{
+ if (millis() - max6675_previous_millis < HEAT_INTERVAL)
+ return max6675_temp;
+
+ max6675_previous_millis = millis();
+
+ max6675_temp = 0;
+
+ #ifdef PRR
+ PRR &= ~(1<<PRSPI);
+ #elif defined PRR0
+ PRR0 &= ~(1<<PRSPI);
+ #endif
+
+ SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
+
+ // enable TT_MAX6675
+ WRITE(MAX6675_SS, 0);
+
+ // ensure 100ns delay - a bit extra is fine
+ delay(1);
+
+ // read MSB
+ SPDR = 0;
+ for (;(SPSR & (1<<SPIF)) == 0;);
+ max6675_temp = SPDR;
+ max6675_temp <<= 8;
+
+ // read LSB
+ SPDR = 0;
+ for (;(SPSR & (1<<SPIF)) == 0;);
+ max6675_temp |= SPDR;
+
+ // disable TT_MAX6675
+ WRITE(MAX6675_SS, 1);
+
+ if (max6675_temp & 4)
+ {
+ // thermocouple open
+ max6675_temp = 2000;
+ }
+ else
+ {
+ max6675_temp = max6675_temp >> 3;
+ }
+
+ return max6675_temp;
+}
+#endif
+
+
+#ifdef PID_SOFT_PWM
+
+ void init_Timer2_softpwm(void)
+ {
+ // This is a simple SOFT PWM with 500 Hz for Extruder Heating
+
+
+ TIFR2 = (1 << TOV2); // clear interrupt flag
+ TCCR2B = (1 << CS22) | (1 << CS20); // start timer (ck/128 prescalar)
+ TCCR2A = (1 << WGM21); // CTC mode
+ OCR2A = 128; // We want to have at least 30Hz or else it gets choppy
+ TIMSK2 = (1 << OCIE2A); // enable timer2 output compare match interrupt
+
+ }
+
+
+ ISR(TIMER2_COMPA_vect)
+ {
+
+
+ if(g_heater_pwm_val < 2)
+ {
+ #if LED_PIN > -1
+ WRITE(LED_PIN,LOW);
+ #endif
+ WRITE(HEATER_0_PIN,LOW);
+ PWM_out_on = 0;
+ OCR2A = 128;
+ }
+ else if(g_heater_pwm_val > 253)
+ {
+ #if LED_PIN > -1
+ WRITE(LED_PIN,HIGH);
+ #endif
+ WRITE(HEATER_0_PIN,HIGH);
+ PWM_out_on = 1;
+ OCR2A = 128;
+ }
+ else
+ {
+
+ if(PWM_out_on == 1)
+ {
+
+ #if LED_PIN > -1
+ WRITE(LED_PIN,LOW);
+ #endif
+ WRITE(HEATER_0_PIN,LOW);
+ PWM_out_on = 0;
+ OCR2A = PWM_off_time;
+ }
+ else
+ {
+
+ #if LED_PIN > -1
+ WRITE(LED_PIN,HIGH);
+ #endif
+ WRITE(HEATER_0_PIN,HIGH);
+ PWM_out_on = 1;
+
+ if(g_heater_pwm_val > 253)
+ {
+ OCR2A = 253;
+ PWM_off_time = 2;
+ }
+ else if(g_heater_pwm_val < 2)
+ {
+ OCR2A = 2;
+ PWM_off_time = 253;
+ }
+ else
+ {
+ OCR2A = g_heater_pwm_val;
+ PWM_off_time = 255 - g_heater_pwm_val;
+ }
+
+ }
+ }
+
+
+ }
+ #endif
+
+
+
+ void manage_heater()
+ {
+
+ //Temperatur Monitor for repetier
+ if((millis() - previous_millis_monitor) > 250 )
+ {
+ previous_millis_monitor = millis();
+ if(manage_monitor <= 1)
+ {
+ showString(PSTR("MTEMP:"));
+ Serial.print(millis());
+ if(manage_monitor<1)
+ {
+ showString(PSTR(" "));
+ Serial.print(analog2temp(current_raw));
+ showString(PSTR(" "));
+ Serial.print(target_temp);
+ showString(PSTR(" "));
+ Serial.println(heater_duty);
+ }
+ #if THERMISTORBED!=0
+ else
+ {
+ showString(PSTR(" "));
+ Serial.print(analog2tempBed(current_bed_raw));
+ showString(PSTR(" "));
+ Serial.print(analog2tempBed(target_bed_raw));
+ showString(PSTR(" "));
+ if(READ(HEATER_1_PIN))
+ Serial.println(255);
+ else
+ Serial.println(0);
+ }
+ #endif
+
+ }
+
+ }
+ // ENDE Temperatur Monitor for repetier
+
+ if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
+ return;
+
+ previous_millis_heater = millis();
+
+ #ifdef HEATER_USES_THERMISTOR
+ current_raw = analogRead(TEMP_0_PIN);
+ #ifdef DEBUG_HEAT_MGMT
+ log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
+ log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
+ #endif
+ // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
+ // this switches it up so that the reading appears lower than target for the control logic.
+ current_raw = 1023 - current_raw;
+ #elif defined HEATER_USES_AD595
+ current_raw = analogRead(TEMP_0_PIN);
+ #elif defined HEATER_USES_MAX6675
+ current_raw = read_max6675();
+ #endif
+
+ //MIN / MAX save to display the jitter of Heaterbarrel
+ if(current_raw > current_raw_maxval)
+ current_raw_maxval = current_raw;
+
+ if(current_raw < current_raw_minval)
+ current_raw_minval = current_raw;
+
+ #ifdef SMOOTHING
+ if (!nma) nma = SMOOTHFACTOR * current_raw;
+ nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
+ current_raw = nma / SMOOTHFACTOR;
+ #endif
+
+ #ifdef WATCHPERIOD
+ if(watchmillis && millis() - watchmillis > WATCHPERIOD)
+ {
+ if(watch_raw + 1 >= current_raw)
+ {
+ target_temp = target_raw = 0;
+ WRITE(HEATER_0_PIN,LOW);
+
+ #ifdef PID_SOFT_PWM
+ g_heater_pwm_val = 0;
+ #else
+ analogWrite(HEATER_0_PIN, 0);
+ #if LED_PIN>-1
+ WRITE(LED_PIN,LOW);
+ #endif
+ #endif
+ }
+ else
+ {
+ watchmillis = 0;
+ }
+ }
+ #endif
+
+ //If tmp is lower then MINTEMP stop the Heater
+ //or it os better to deaktivate the uutput PIN or PWM ?
+ #ifdef MINTEMP
+ if(current_raw <= minttemp)
+ target_temp = target_raw = 0;
+ #endif
+
+ #ifdef MAXTEMP
+ if(current_raw >= maxttemp)
+ {
+ target_temp = target_raw = 0;
+
+ #if (ALARM_PIN > -1)
+ WRITE(ALARM_PIN,HIGH);
+ #endif
+ }
+ #endif
+
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595)
+ #ifdef PIDTEMP
+
+ int current_temp = analog2temp(current_raw);
+ error = target_temp - current_temp;
+ int delta_temp = current_temp - prev_temp;
+
+ prev_temp = current_temp;
+ pTerm = ((long)PID_PGAIN * error) / 256;
+ const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT);
+ heater_duty = H0 + pTerm;
+
+ if(error < 30)
+ {
+ temp_iState += error;
+ temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
+ iTerm = ((long)PID_IGAIN * temp_iState) / 256;
+ heater_duty += iTerm;
+ }
+
+ int prev_error = abs(target_temp - prev_temp);
+ int log3 = 1; // discrete logarithm base 3, plus 1
+
+ if(prev_error > 81){ prev_error /= 81; log3 += 4; }
+ if(prev_error > 9){ prev_error /= 9; log3 += 2; }
+ if(prev_error > 3){ prev_error /= 3; log3 ++; }
+
+ dTerm = ((long)PID_DGAIN * delta_temp) / (256*log3);
+ heater_duty += dTerm;
+ heater_duty = constrain(heater_duty, 0, HEATER_CURRENT);
+
+ #ifdef PID_SOFT_PWM
+ g_heater_pwm_val = heater_duty;
+ #else
+ analogWrite(HEATER_0_PIN, heater_duty);
+
+ #if LED_PIN>-1
+ analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255));
+ #endif
+ #endif
+
+ #else
+
+ if(current_raw >= target_raw)
+ {
+ WRITE(HEATER_0_PIN,LOW);
+ #if LED_PIN>-1
+ WRITE(LED_PIN,LOW);
+ #endif
+ }
+ else
+ {
+ WRITE(HEATER_0_PIN,HIGH);
+ #if LED_PIN > -1
+ WRITE(LED_PIN,HIGH);
+ #endif
+ }
+ #endif
+ #endif
+
+ if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
+ return;
+
+ previous_millis_bed_heater = millis();
+
+ #ifndef TEMP_1_PIN
+ return;
+ #endif
+
+ #if TEMP_1_PIN == -1
+ return;
+ #else
+
+ #ifdef BED_USES_THERMISTOR
+
+ current_bed_raw = analogRead(TEMP_1_PIN);
+
+ #ifdef DEBUG_HEAT_MGMT
+ log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
+ log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
+ #endif
+
+ // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
+ // this switches it up so that the reading appears lower than target for the control logic.
+ current_bed_raw = 1023 - current_bed_raw;
+ #elif defined BED_USES_AD595
+ current_bed_raw = analogRead(TEMP_1_PIN);
+
+ #endif
+
+
+ #ifdef MINTEMP
+ if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp)
+ #else
+ if(current_bed_raw >= target_bed_raw)
+ #endif
+ {
+ WRITE(HEATER_1_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_1_PIN,HIGH);
+ }
+ #endif
+
+#ifdef CONTROLLERFAN_PIN
+ controllerFan(); //Check if fan should be turned on to cool stepper drivers down
+#endif
+
+}
+
+#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
+int temp2analog_thermistor(int celsius, const short table[][2], int numtemps)
+{
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<numtemps; i++)
+ {
+ if (table[i][1] < celsius)
+ {
+ raw = table[i-1][0] +
+ (celsius - table[i-1][1]) *
+ (table[i][0] - table[i-1][0]) /
+ (table[i][1] - table[i-1][1]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == numtemps) raw = table[i-1][0];
+
+ return 1023 - raw;
+}
+#endif
+
+#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
+int temp2analog_ad595(int celsius)
+{
+ return celsius * 1024 / (500);
+}
+#endif
+
+#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
+int temp2analog_max6675(int celsius)
+{
+ return celsius * 4;
+}
+#endif
+
+#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
+int analog2temp_thermistor(int raw,const short table[][2], int numtemps) {
+ int celsius = 0;
+ byte i;
+
+ raw = 1023 - raw;
+
+ for (i=1; i<numtemps; i++)
+ {
+ if (table[i][0] > raw)
+ {
+ celsius = table[i-1][1] +
+ (raw - table[i-1][0]) *
+ (table[i][1] - table[i-1][1]) /
+ (table[i][0] - table[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == numtemps) celsius = table[i-1][1];
+
+ return celsius;
+}
+#endif
+
+#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
+int analog2temp_ad595(int raw)
+{
+ return raw * 500 / 1024;
+}
+#endif
+
+#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
+int analog2temp_max6675(int raw)
+{
+ return raw / 4;
+}
+#endif
+
+#ifdef CONTROLLERFAN_PIN
+unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
+unsigned long lastMotorCheck = 0;
+
+void controllerFan()
+{
+ if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
+ {
+ lastMotorCheck = millis();
+
+ if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled...
+ {
+ lastMotor = millis(); //... set time to NOW so the fan will turn on
+ }
+
+ if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
+ {
+ WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
+ }
+ else
+ {
+ WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
+ }
+ }
+}
+#endif
+
diff --git a/Sprinter/heater.h b/Sprinter/heater.h
new file mode 100644
index 0000000..5470a4f
--- /dev/null
+++ b/Sprinter/heater.h
@@ -0,0 +1,119 @@
+/*
+ Reprap heater funtions based on Sprinter
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+/*
+ This softwarepart for Heatercontrol is based on Sprinter
+ big thanks to kliment (https://github.com/kliment/Sprinter)
+
+*/
+
+
+#include "Configuration.h"
+#include "thermistortables.h"
+
+#if defined HEATER_USES_THERMISTOR
+#define temp2analogh( c ) temp2analog_thermistor(c,temptable,NUMTEMPS)
+#define analog2temp( c ) analog2temp_thermistor(c,temptable,NUMTEMPS)
+#elif defined HEATER_USES_AD595
+#define temp2analogh( c ) temp2analog_ad595(c)
+#define analog2temp( c ) analog2temp_ad595(c)
+#elif defined HEATER_USES_MAX6675
+#define temp2analogh( c ) temp2analog_max6675(c)
+#define analog2temp( c ) analog2temp_max6675(c)
+#endif
+
+#if defined BED_USES_THERMISTOR
+#define temp2analogBed( c ) temp2analog_thermistor((c),bedtemptable,BNUMTEMPS)
+#define analog2tempBed( c ) analog2temp_thermistor((c),bedtemptable,BNUMTEMPS)
+#elif defined BED_USES_AD595
+#define temp2analogBed( c ) temp2analog_ad595(c)
+#define analog2tempBed( c ) analog2temp_ad595(c)
+#elif defined BED_USES_MAX6675
+#define temp2analogBed( c ) temp2analog_max6675(c)
+#define analog2tempBed( c ) analog2temp_max6675(c)
+#endif
+
+#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
+int temp2analog_thermistor(int celsius, const short table[][2], int numtemps);
+int analog2temp_thermistor(int raw,const short table[][2], int numtemps);
+#endif
+
+#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
+int temp2analog_ad595(int celsius);
+int analog2temp_ad595(int raw);
+#endif
+
+#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
+int temp2analog_max6675(int celsius);
+int analog2temp_max6675(int raw);
+#endif
+
+
+extern int target_raw;
+extern int target_temp;
+extern int current_raw;
+extern int current_raw_maxval;
+extern int current_raw_minval;
+extern int tt_maxval;
+extern int tt_minval;
+extern int target_bed_raw;
+extern int current_bed_raw;
+extern unsigned long previous_millis_heater, previous_millis_bed_heater;
+extern unsigned char manage_monitor;
+
+#ifdef PIDTEMP
+ extern int g_heater_pwm_val;
+
+ extern unsigned char PWM_off_time;
+ extern unsigned char PWM_out_on;
+
+ extern int temp_iState;
+ extern int temp_dState;
+ extern int prev_temp;
+ extern int pTerm;
+ extern int iTerm;
+ extern int dTerm;
+ extern int error;
+ extern int heater_duty;
+#endif
+
+
+#ifdef AUTOTEMP
+ extern float autotemp_max;
+ extern float autotemp_min;
+ extern float autotemp_factor;
+ extern int autotemp_setpoint;
+ extern bool autotemp_enabled;
+#endif
+
+
+#ifdef SMOOTHING
+ extern uint32_t nma;
+#endif
+
+#ifdef WATCHPERIOD
+ extern int watch_raw;
+ extern unsigned long watchmillis;
+#endif
+
+
+
+
+#ifdef PID_SOFT_PWM
+ void init_Timer2_softpwm(void);
+#endif
+
+void manage_heater();
diff --git a/Sprinter/pins.h b/Sprinter/pins.h
index 3bc337e..25dbd54 100644
--- a/Sprinter/pins.h
+++ b/Sprinter/pins.h
@@ -662,21 +662,17 @@
#define HEATER_0_PIN 13 // (extruder)
#ifdef SANGUINOLOLU_V_1_2
-
#define HEATER_1_PIN 12 // (bed)
#define X_ENABLE_PIN 14
#define Y_ENABLE_PIN 14
#define Z_ENABLE_PIN 26
#define E_ENABLE_PIN 14
-
#else
-
#define HEATER_1_PIN 14 // (bed)
#define X_ENABLE_PIN -1
#define Y_ENABLE_PIN -1
#define Z_ENABLE_PIN -1
#define E_ENABLE_PIN -1
-
#endif
#define TEMP_0_PIN 7 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
diff --git a/Sprinter/speed_lookuptable.h b/Sprinter/speed_lookuptable.h
new file mode 100644
index 0000000..26eacc1
--- /dev/null
+++ b/Sprinter/speed_lookuptable.h
@@ -0,0 +1,76 @@
+#ifndef SPEED_LOOKUPTABLE_H
+#define SPEED_LOOKUPTABLE_H
+
+#include <avr/pgmspace.h>
+
+uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
+{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
+{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
+{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
+{ 323, 13}, { 310, 11}, { 299, 11}, { 288, 11}, { 277, 9}, { 268, 9}, { 259, 8}, { 251, 8},
+{ 243, 8}, { 235, 7}, { 228, 6}, { 222, 6}, { 216, 6}, { 210, 6}, { 204, 5}, { 199, 5},
+{ 194, 5}, { 189, 4}, { 185, 4}, { 181, 4}, { 177, 4}, { 173, 4}, { 169, 4}, { 165, 3},
+{ 162, 3}, { 159, 4}, { 155, 3}, { 152, 3}, { 149, 2}, { 147, 3}, { 144, 3}, { 141, 2},
+{ 139, 3}, { 136, 2}, { 134, 2}, { 132, 3}, { 129, 2}, { 127, 2}, { 125, 2}, { 123, 2},
+{ 121, 2}, { 119, 1}, { 118, 2}, { 116, 2}, { 114, 1}, { 113, 2}, { 111, 2}, { 109, 1},
+{ 108, 2}, { 106, 1}, { 105, 2}, { 103, 1}, { 102, 1}, { 101, 1}, { 100, 2}, { 98, 1},
+{ 97, 1}, { 96, 1}, { 95, 2}, { 93, 1}, { 92, 1}, { 91, 1}, { 90, 1}, { 89, 1},
+{ 88, 1}, { 87, 1}, { 86, 1}, { 85, 1}, { 84, 1}, { 83, 0}, { 83, 1}, { 82, 1},
+{ 81, 1}, { 80, 1}, { 79, 1}, { 78, 0}, { 78, 1}, { 77, 1}, { 76, 1}, { 75, 0},
+{ 75, 1}, { 74, 1}, { 73, 1}, { 72, 0}, { 72, 1}, { 71, 1}, { 70, 0}, { 70, 1},
+{ 69, 0}, { 69, 1}, { 68, 1}, { 67, 0}, { 67, 1}, { 66, 0}, { 66, 1}, { 65, 0},
+{ 65, 1}, { 64, 1}, { 63, 0}, { 63, 1}, { 62, 0}, { 62, 1}, { 61, 0}, { 61, 1},
+{ 60, 0}, { 60, 0}, { 60, 1}, { 59, 0}, { 59, 1}, { 58, 0}, { 58, 1}, { 57, 0},
+{ 57, 1}, { 56, 0}, { 56, 0}, { 56, 1}, { 55, 0}, { 55, 1}, { 54, 0}, { 54, 0},
+{ 54, 1}, { 53, 0}, { 53, 0}, { 53, 1}, { 52, 0}, { 52, 0}, { 52, 1}, { 51, 0},
+{ 51, 0}, { 51, 1}, { 50, 0}, { 50, 0}, { 50, 1}, { 49, 0}, { 49, 0}, { 49, 1},
+{ 48, 0}, { 48, 0}, { 48, 1}, { 47, 0}, { 47, 0}, { 47, 0}, { 47, 1}, { 46, 0},
+{ 46, 0}, { 46, 1}, { 45, 0}, { 45, 0}, { 45, 0}, { 45, 1}, { 44, 0}, { 44, 0},
+{ 44, 0}, { 44, 1}, { 43, 0}, { 43, 0}, { 43, 0}, { 43, 1}, { 42, 0}, { 42, 0},
+{ 42, 0}, { 42, 1}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 1}, { 40, 0},
+{ 40, 0}, { 40, 0}, { 40, 0}, { 40, 1}, { 39, 0}, { 39, 0}, { 39, 0}, { 39, 0},
+{ 39, 1}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 1}, { 37, 0}, { 37, 0},
+{ 37, 0}, { 37, 0}, { 37, 0}, { 37, 1}, { 36, 0}, { 36, 0}, { 36, 0}, { 36, 0},
+{ 36, 1}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 1},
+{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
+{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
+{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
+{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0},
+};
+
+uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
+{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
+{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
+{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
+{ 8928, 308}, { 8620, 287}, { 8333, 269}, { 8064, 252}, { 7812, 237}, { 7575, 223}, { 7352, 210}, { 7142, 198},
+{ 6944, 188}, { 6756, 178}, { 6578, 168}, { 6410, 160}, { 6250, 153}, { 6097, 145}, { 5952, 139}, { 5813, 132},
+{ 5681, 126}, { 5555, 121}, { 5434, 115}, { 5319, 111}, { 5208, 106}, { 5102, 102}, { 5000, 99}, { 4901, 94},
+{ 4807, 91}, { 4716, 87}, { 4629, 84}, { 4545, 81}, { 4464, 79}, { 4385, 75}, { 4310, 73}, { 4237, 71},
+{ 4166, 68}, { 4098, 66}, { 4032, 64}, { 3968, 62}, { 3906, 60}, { 3846, 59}, { 3787, 56}, { 3731, 55},
+{ 3676, 53}, { 3623, 52}, { 3571, 50}, { 3521, 49}, { 3472, 48}, { 3424, 46}, { 3378, 45}, { 3333, 44},
+{ 3289, 43}, { 3246, 41}, { 3205, 41}, { 3164, 39}, { 3125, 39}, { 3086, 38}, { 3048, 36}, { 3012, 36},
+{ 2976, 35}, { 2941, 35}, { 2906, 33}, { 2873, 33}, { 2840, 32}, { 2808, 31}, { 2777, 30}, { 2747, 30},
+{ 2717, 29}, { 2688, 29}, { 2659, 28}, { 2631, 27}, { 2604, 27}, { 2577, 26}, { 2551, 26}, { 2525, 25},
+{ 2500, 25}, { 2475, 25}, { 2450, 23}, { 2427, 24}, { 2403, 23}, { 2380, 22}, { 2358, 22}, { 2336, 22},
+{ 2314, 21}, { 2293, 21}, { 2272, 20}, { 2252, 20}, { 2232, 20}, { 2212, 20}, { 2192, 19}, { 2173, 18},
+{ 2155, 19}, { 2136, 18}, { 2118, 18}, { 2100, 17}, { 2083, 17}, { 2066, 17}, { 2049, 17}, { 2032, 16},
+{ 2016, 16}, { 2000, 16}, { 1984, 16}, { 1968, 15}, { 1953, 16}, { 1937, 14}, { 1923, 15}, { 1908, 15},
+{ 1893, 14}, { 1879, 14}, { 1865, 14}, { 1851, 13}, { 1838, 14}, { 1824, 13}, { 1811, 13}, { 1798, 13},
+{ 1785, 12}, { 1773, 13}, { 1760, 12}, { 1748, 12}, { 1736, 12}, { 1724, 12}, { 1712, 12}, { 1700, 11},
+{ 1689, 12}, { 1677, 11}, { 1666, 11}, { 1655, 11}, { 1644, 11}, { 1633, 10}, { 1623, 11}, { 1612, 10},
+{ 1602, 10}, { 1592, 10}, { 1582, 10}, { 1572, 10}, { 1562, 10}, { 1552, 9}, { 1543, 10}, { 1533, 9},
+{ 1524, 9}, { 1515, 9}, { 1506, 9}, { 1497, 9}, { 1488, 9}, { 1479, 9}, { 1470, 9}, { 1461, 8},
+{ 1453, 8}, { 1445, 9}, { 1436, 8}, { 1428, 8}, { 1420, 8}, { 1412, 8}, { 1404, 8}, { 1396, 8},
+{ 1388, 7}, { 1381, 8}, { 1373, 7}, { 1366, 8}, { 1358, 7}, { 1351, 7}, { 1344, 8}, { 1336, 7},
+{ 1329, 7}, { 1322, 7}, { 1315, 7}, { 1308, 6}, { 1302, 7}, { 1295, 7}, { 1288, 6}, { 1282, 7},
+{ 1275, 6}, { 1269, 7}, { 1262, 6}, { 1256, 6}, { 1250, 7}, { 1243, 6}, { 1237, 6}, { 1231, 6},
+{ 1225, 6}, { 1219, 6}, { 1213, 6}, { 1207, 6}, { 1201, 5}, { 1196, 6}, { 1190, 6}, { 1184, 5},
+{ 1179, 6}, { 1173, 5}, { 1168, 6}, { 1162, 5}, { 1157, 5}, { 1152, 6}, { 1146, 5}, { 1141, 5},
+{ 1136, 5}, { 1131, 5}, { 1126, 5}, { 1121, 5}, { 1116, 5}, { 1111, 5}, { 1106, 5}, { 1101, 5},
+{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
+{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
+{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
+{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3},
+};
+
+#endif