diff options
Diffstat (limited to 'Tonokip_Firmware')
-rw-r--r-- | Tonokip_Firmware/Tonokip_Firmware.pde | 829 | ||||
-rw-r--r-- | Tonokip_Firmware/configuration.h | 60 |
2 files changed, 423 insertions, 466 deletions
diff --git a/Tonokip_Firmware/Tonokip_Firmware.pde b/Tonokip_Firmware/Tonokip_Firmware.pde index fc49da1..cb8e552 100644 --- a/Tonokip_Firmware/Tonokip_Firmware.pde +++ b/Tonokip_Firmware/Tonokip_Firmware.pde @@ -57,40 +57,41 @@ //Stepper Movement Variables -bool direction_x, direction_y, direction_z, direction_e; -unsigned long previous_micros = 0, previous_micros_x = 0, previous_micros_y = 0, previous_micros_z = 0, previous_micros_e = 0, previous_millis_heater, previous_millis_bed_heater; -unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take; +char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; +bool move_direction[NUM_AXIS]; +const int STEP_PIN[NUM_AXIS] = {X_STEP_PIN, Y_STEP_PIN, Z_STEP_PIN, E_STEP_PIN}; +unsigned long axis_previous_micros[NUM_AXIS]; +unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater; +unsigned long move_steps_to_take[NUM_AXIS]; #ifdef RAMP_ACCELERATION - unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit); - unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit); + unsigned long axis_max_interval[] = {100000000.0 / (max_start_speed_units_per_second[0] * axis_steps_per_unit[0]), + 100000000.0 / (max_start_speed_units_per_second[1] * axis_steps_per_unit[1]), + 100000000.0 / (max_start_speed_units_per_second[2] * axis_steps_per_unit[2]), + 100000000.0 / (max_start_speed_units_per_second[3] * axis_steps_per_unit[3])}; //TODO: refactor all things like this in a function, or move to setup() + // in a for loop unsigned long max_interval; - unsigned long x_steps_per_sqr_second = max_acceleration_units_per_sq_second * x_steps_per_unit; - unsigned long y_steps_per_sqr_second = max_acceleration_units_per_sq_second * y_steps_per_unit; - unsigned long x_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * x_steps_per_unit; - unsigned long y_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * y_steps_per_unit; + unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], + max_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2], + max_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]}; + unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], + max_travel_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_travel_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2], + max_travel_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]}; unsigned long steps_per_sqr_second, plateau_steps; #endif -#ifdef EXP_ACCELERATION - unsigned long long_full_velocity_units = full_velocity_units * 100; - unsigned long long_travel_move_full_velocity_units = travel_move_full_velocity_units * 100; - unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit); - unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit); - unsigned long max_interval; - unsigned long x_min_constant_speed_steps = min_constant_speed_units * x_steps_per_unit, - y_min_constant_speed_steps = min_constant_speed_units * y_steps_per_unit, min_constant_speed_steps; -#endif boolean acceleration_enabled = false, accelerating = false; unsigned long interval; -float destination_x = 0.0, destination_y = 0.0, destination_z = 0.0, destination_e = 0.0; -float current_x = 0.0, current_y = 0.0, current_z = 0.0, current_e = 0.0; -long x_interval, y_interval, z_interval, e_interval; // for speed delay -float feedrate = 1500, next_feedrate, z_feedrate, saved_feedrate; -bool home_all_axis = true; +float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; +float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; +long axis_interval[NUM_AXIS]; // for speed delay +float feedrate = 1500, next_feedrate, saved_feedrate; float time_for_move; long gcode_N, gcode_LastN; bool relative_mode = false; //Determines Absolute or Relative Coordinates bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. long timediff = 0; +//experimental feedrate calc +float d = 0; +float axis_diff[NUM_AXIS] = {0, 0, 0, 0}; #ifdef STEP_DELAY_RATIO long long_step_delay_ratio = STEP_DELAY_RATIO * 100; #endif @@ -208,11 +209,9 @@ void setup() for(int i = 0; i < BUFSIZE; i++){ fromsd[i] = false; } + //Initialize Step Pins - if(X_STEP_PIN > -1) pinMode(X_STEP_PIN,OUTPUT); - if(Y_STEP_PIN > -1) pinMode(Y_STEP_PIN,OUTPUT); - if(Z_STEP_PIN > -1) pinMode(Z_STEP_PIN,OUTPUT); - if(E_STEP_PIN > -1) pinMode(E_STEP_PIN,OUTPUT); + for(int i=0; i < NUM_AXIS; i++) if(STEP_PIN[i] > -1) pinMode(STEP_PIN[i],OUTPUT); //Initialize Dir Pins if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT); @@ -268,6 +267,7 @@ void setup() initsd(); #endif + } @@ -437,9 +437,6 @@ inline bool code_seen(char code) strchr_pointer = strchr(cmdbuffer[bufindr], code); return (strchr_pointer != NULL); //Return True if a character was found } - //experimental feedrate calc -float d = 0; -float xdiff = 0, ydiff = 0, zdiff = 0, ediff = 0; inline void process_commands() { @@ -452,6 +449,9 @@ inline void process_commands() { case 0: // G0 -> G1 case 1: // G1 + #ifdef DISABLE_CHECK_DURING_ACC || DISABLE_CHECK_DURING_MOVE || DISABLE_CHECK_DURING_TRAVEL + manage_heater(); + #endif get_coordinates(); // For X Y Z E F prepare_move(); previous_millis_cmd = millis(); @@ -469,74 +469,70 @@ inline void process_commands() break; case 28: //G28 Home all Axis one at a time saved_feedrate = feedrate; - destination_x = 0; - current_x = 0; - destination_y = 0; - current_y = 0; - destination_z = 0; - current_z = 0; - destination_e = 0; - current_e = 0; + for(int i=0; i < NUM_AXIS; i++) { + destination[i] = 0; + current_position[i] = 0; + } feedrate = 0; - - home_all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z'))); + + home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); if((home_all_axis) || (code_seen('X'))) { if((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) { - current_x = 0; - destination_x = 1.5 * X_MAX_LENGTH * X_HOME_DIR; - feedrate = min_units_per_second * 60; + current_position[0] = 0; + destination[0] = 1.5 * X_MAX_LENGTH * X_HOME_DIR; + feedrate = max_start_speed_units_per_second[0] * 60; prepare_move(); - - current_x = 0; - destination_x = -1 * X_HOME_DIR; + + current_position[0] = 0; + destination[0] = -1 * X_HOME_DIR; prepare_move(); - - destination_x = 10 * X_HOME_DIR; + + destination[0] = 10 * X_HOME_DIR; prepare_move(); - - current_x = 0; - destination_x = 0; + + current_position[0] = 0; + destination[0] = 0; feedrate = 0; } } - if((home_all_axis) || (code_seen('Y'))) { + if((home_all_axis) || (code_seen('X'))) { if((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) { - current_y = 0; - destination_y = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; - feedrate = min_units_per_second * 60; + current_position[1] = 0; + destination[1] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; + feedrate = max_start_speed_units_per_second[1] * 60; prepare_move(); - - current_y = 0; - destination_y = -1 * Y_HOME_DIR; + + current_position[1] = 0; + destination[1] = -1 * Y_HOME_DIR; prepare_move(); - - destination_y = 10 * Y_HOME_DIR; + + destination[1] = 10 * Y_HOME_DIR; prepare_move(); - - current_y = 0; - destination_y = 0; + + current_position[1] = 0; + destination[1] = 0; feedrate = 0; } } - if((home_all_axis) || (code_seen('Z'))) { + if((home_all_axis) || (code_seen('X'))) { if((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) { - current_z = 0; - destination_z = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; - feedrate = max_z_feedrate/2; + current_position[2] = 0; + destination[2] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; + feedrate = max_feedrate[2]/2; prepare_move(); - - current_z = 0; - destination_z = -1 * Z_HOME_DIR; + + current_position[2] = 0; + destination[2] = -1 * Z_HOME_DIR; prepare_move(); - - destination_z = 10 * Z_HOME_DIR; + + destination[2] = 10 * Z_HOME_DIR; prepare_move(); - - current_z = 0; - destination_z = 0; + + current_position[2] = 0; + destination[2] = 0; feedrate = 0; } } @@ -551,10 +547,9 @@ inline void process_commands() relative_mode = true; break; case 92: // G92 - if(code_seen('X')) current_x = code_value(); - if(code_seen('Y')) current_y = code_value(); - if(code_seen('Z')) current_z = code_value(); - if(code_seen('E')) current_e = code_value(); + for(int i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) current_position[i] = code_value(); + } break; } @@ -751,10 +746,10 @@ inline void process_commands() if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating break; case 82: - relative_mode_e = false; + axis_relative_modes[3] = false; break; case 83: - relative_mode_e = true; + axis_relative_modes[3] = true; break; case 84: if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; } @@ -765,32 +760,44 @@ inline void process_commands() max_inactive_time = code_value() * 1000; break; case 92: // M92 - if(code_seen('X')) x_steps_per_unit = code_value(); - if(code_seen('Y')) y_steps_per_unit = code_value(); - if(code_seen('Z')) z_steps_per_unit = code_value(); - if(code_seen('E')) e_steps_per_unit = code_value(); + for(int i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value(); + } + + //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it + // should also be used in setup() as well + #ifdef RAMP_ACCELERATION + long temp_max_intervals[NUM_AXIS]; + for(int i=0; i < NUM_AXIS; i++) { + axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for + // all steps_per_unit related variables + } + #endif break; case 115: // M115 Serial.println("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1"); break; case 114: // M114 Serial.print("X:"); - Serial.print(current_x); + Serial.print(current_position[0]); Serial.print("Y:"); - Serial.print(current_y); + Serial.print(current_position[1]); Serial.print("Z:"); - Serial.print(current_z); + Serial.print(current_position[2]); Serial.print("E:"); - Serial.println(current_e); + Serial.println(current_position[3]); break; #ifdef RAMP_ACCELERATION + //TODO: update for all axis, use for loop case 201: // M201 - if(code_seen('X')) x_steps_per_sqr_second = code_value() * x_steps_per_unit; - if(code_seen('Y')) y_steps_per_sqr_second = code_value() * y_steps_per_unit; + for(int i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; + } break; case 202: // M202 - if(code_seen('X')) x_travel_steps_per_sqr_second = code_value() * x_steps_per_unit; - if(code_seen('Y')) y_travel_steps_per_sqr_second = code_value() * y_steps_per_unit; + for(int i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; + } break; #endif } @@ -826,14 +833,10 @@ inline void ClearToSend() inline void get_coordinates() { - if(code_seen('X')) destination_x = (float)code_value() + relative_mode*current_x; - else destination_x = current_x; //Are these else lines really needed? - if(code_seen('Y')) destination_y = (float)code_value() + relative_mode*current_y; - else destination_y = current_y; - if(code_seen('Z')) destination_z = (float)code_value() + relative_mode*current_z; - else destination_z = current_z; - if(code_seen('E')) destination_e = (float)code_value() + (relative_mode_e || relative_mode)*current_e; - else destination_e = current_e; + for(int i=0; i < NUM_AXIS; i++) { + if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; + else destination[i] = current_position[i]; //Are these else lines really needed? + } if(code_seen('F')) { next_feedrate = code_value(); if(next_feedrate > 0.0) feedrate = next_feedrate; @@ -843,202 +846,169 @@ inline void get_coordinates() inline void prepare_move() { //Find direction - if(destination_x >= current_x) direction_x = 1; - else direction_x = 0; - if(destination_y >= current_y) direction_y = 1; - else direction_y = 0; - if(destination_z >= current_z) direction_z = 1; - else direction_z = 0; - if(destination_e >= current_e) direction_e = 1; - else direction_e = 0; + for(int i=0; i < NUM_AXIS; i++) { + if(destination[i] >= current_position[i]) move_direction[i] = 1; + else move_direction[i] = 0; + } if (min_software_endstops) { - if (destination_x < 0) destination_x = 0.0; - if (destination_y < 0) destination_y = 0.0; - if (destination_z < 0) destination_z = 0.0; + if (destination[0] < 0) destination[0] = 0.0; + if (destination[1] < 0) destination[1] = 0.0; + if (destination[2] < 0) destination[2] = 0.0; } if (max_software_endstops) { - if (destination_x > X_MAX_LENGTH) destination_x = X_MAX_LENGTH; - if (destination_y > Y_MAX_LENGTH) destination_y = Y_MAX_LENGTH; - if (destination_z > Z_MAX_LENGTH) destination_z = Z_MAX_LENGTH; + if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH; + if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH; + if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH; } - - if(feedrate > max_feedrate) feedrate = max_feedrate; - if(feedrate > max_z_feedrate) z_feedrate = max_z_feedrate; - else z_feedrate = feedrate; - - xdiff = (destination_x - current_x); - ydiff = (destination_y - current_y); - zdiff = (destination_z - current_z); - ediff = (destination_e - current_e); - x_steps_to_take = abs(xdiff) * x_steps_per_unit; - y_steps_to_take = abs(ydiff) * y_steps_per_unit; - z_steps_to_take = abs(zdiff) * z_steps_per_unit; - e_steps_to_take = abs(ediff) * e_steps_per_unit; + for(int i=0; i < NUM_AXIS; i++) { + axis_diff[i] = destination[i] - current_position[i]; + move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i]; + } if(feedrate < 10) feedrate = 10; - /* - //experimental feedrate calc - if(abs(xdiff) > 0.1 && abs(ydiff) > 0.1) - d = sqrt(xdiff * xdiff + ydiff * ydiff); - else if(abs(xdiff) > 0.1) - d = abs(xdiff); - else if(abs(ydiff) > 0.1) - d = abs(ydiff); - else if(abs(zdiff) > 0.05) - d = abs(zdiff); - else if(abs(ediff) > 0.1) - d = abs(ediff); - else d = 1; //extremely slow move, should be okay for moves under 0.1mm - time_for_move = (xdiff / (feedrate / 60000000) ); - //time = 60000000 * dist / feedrate - //int feedz = (60000000 * zdiff) / time_for_move; - //if(feedz > maxfeed) - */ - #define X_TIME_FOR_MOVE ((float)x_steps_to_take / (x_steps_per_unit*feedrate/60000000)) - #define Y_TIME_FOR_MOVE ((float)y_steps_to_take / (y_steps_per_unit*feedrate/60000000)) - #define Z_TIME_FOR_MOVE ((float)z_steps_to_take / (z_steps_per_unit*z_feedrate/60000000)) - #define E_TIME_FOR_MOVE ((float)e_steps_to_take / (e_steps_per_unit*feedrate/60000000)) - - time_for_move = max(X_TIME_FOR_MOVE, Y_TIME_FOR_MOVE); - time_for_move = max(time_for_move, Z_TIME_FOR_MOVE); - if(time_for_move <= 0) time_for_move = max(time_for_move, E_TIME_FOR_MOVE); - - if(x_steps_to_take) x_interval = time_for_move / x_steps_to_take * 100; - if(y_steps_to_take) y_interval = time_for_move / y_steps_to_take * 100; - if(z_steps_to_take) z_interval = time_for_move / z_steps_to_take * 100; - if(e_steps_to_take && (x_steps_to_take + y_steps_to_take <= 0) ) e_interval = time_for_move / e_steps_to_take * 100; - //#define DEBUGGING false - #if 0 - if(0) { - Serial.print("destination_x: "); Serial.println(destination_x); - Serial.print("current_x: "); Serial.println(current_x); - Serial.print("x_steps_to_take: "); Serial.println(x_steps_to_take); - Serial.print("X_TIME_FOR_MVE: "); Serial.println(X_TIME_FOR_MOVE); - Serial.print("x_interval: "); Serial.println(x_interval); - Serial.println(""); - Serial.print("destination_y: "); Serial.println(destination_y); - Serial.print("current_y: "); Serial.println(current_y); - Serial.print("y_steps_to_take: "); Serial.println(y_steps_to_take); - Serial.print("Y_TIME_FOR_MVE: "); Serial.println(Y_TIME_FOR_MOVE); - Serial.print("y_interval: "); Serial.println(y_interval); - Serial.println(""); - Serial.print("destination_z: "); Serial.println(destination_z); - Serial.print("current_z: "); Serial.println(current_z); - Serial.print("z_steps_to_take: "); Serial.println(z_steps_to_take); - Serial.print("Z_TIME_FOR_MVE: "); Serial.println(Z_TIME_FOR_MOVE); - Serial.print("z_interval: "); Serial.println(z_interval); - Serial.println(""); - Serial.print("destination_e: "); Serial.println(destination_e); - Serial.print("current_e: "); Serial.println(current_e); - Serial.print("e_steps_to_take: "); Serial.println(e_steps_to_take); - Serial.print("E_TIME_FOR_MVE: "); Serial.println(E_TIME_FOR_MOVE); - Serial.print("e_interval: "); Serial.println(e_interval); - Serial.println(""); + //Feedrate calc based on XYZ travel distance + float xy_d; + if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0 || abs(axis_diff[2])) { + xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]); + d = sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]); } + else if(abs(axis_diff[3]) > 0) + d = abs(axis_diff[3]); + #ifdef DEBUG_PREPARE_MOVE + else { + log_message("_PREPARE_MOVE - No steps to take!"); + } #endif + time_for_move = (d / (feedrate / 60000000.0) ); + //Check max feedrate for each axis is not violated, update time_for_move if necessary + for(int i = 0; i < NUM_AXIS; i++) { + if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) { + time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0)); + } + } + //Calculate the full speed stepper interval for each axis + for(int i=0; i < NUM_AXIS; i++) { + if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100; + } - linear_move(x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take); // make the move + #ifdef DEBUG_PREPARE_MOVE + log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d); + log_float("_PREPARE_MOVE - Move distance on the XYZ space", d); + log_float("_PREPARE_MOVE - Commanded feedrate", feedrate); + log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move); + log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS); + log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS); + log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS); + log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS); + #endif + + unsigned long move_steps[NUM_AXIS]; + for(int i=0; i < NUM_AXIS; i++) + move_steps[i] = move_steps_to_take[i]; + linear_move(move_steps); // make the move } -void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remaining, unsigned long z_steps_remaining, unsigned long e_steps_remaining) // make linear move with preset speeds and destinations, see G0 and G1 +void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1 { //Determine direction of movement - if (destination_x > current_x) digitalWrite(X_DIR_PIN,!INVERT_X_DIR); + if (destination[0] > current_position[0]) digitalWrite(X_DIR_PIN,!INVERT_X_DIR); else digitalWrite(X_DIR_PIN,INVERT_X_DIR); - if (destination_y > current_y) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR); + if (destination[1] > current_position[1]) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR); else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR); - if (destination_z > current_z) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR); + if (destination[2] > current_position[2]) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR); else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR); - if (destination_e > current_e) digitalWrite(E_DIR_PIN,!INVERT_E_DIR); + if (destination[3] > current_position[3]) digitalWrite(E_DIR_PIN,!INVERT_E_DIR); else digitalWrite(E_DIR_PIN,INVERT_E_DIR); - if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0; - if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0; - if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0; - if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0; - if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0; - if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0; + if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0; + if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0; + if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0; + if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0; + if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0; + if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0; //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration. - if(x_steps_remaining) enable_x(); - if(y_steps_remaining) enable_y(); - if(z_steps_remaining) { enable_z(); do_z_step(); z_steps_remaining--; } - if(e_steps_remaining) { enable_e(); do_e_step(); e_steps_remaining--; } + // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram, + // but will reduce code size + if(axis_steps_remaining[0]) enable_x(); + if(axis_steps_remaining[1]) enable_y(); + if(axis_steps_remaining[2]) enable_z(); + if(axis_steps_remaining[3]) enable_e(); //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm. - unsigned int delta_x = x_steps_remaining; - unsigned long x_interval_nanos; - unsigned int delta_y = y_steps_remaining; - unsigned long y_interval_nanos; - unsigned int delta_z = z_steps_remaining; - unsigned long z_interval_nanos; - boolean steep_y = delta_y > delta_x;// && delta_y > delta_e && delta_y > delta_z; - boolean steep_x = delta_x >= delta_y;// && delta_x > delta_e && delta_x > delta_z; - //boolean steep_z = delta_z > delta_x && delta_z > delta_y && delta_z > delta_e; - int error_x; - int error_y; - int error_z; - #ifdef RAMP_ACCELERATION - long max_speed_steps_per_second; - long min_speed_steps_per_second; + unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes + long axis_error[NUM_AXIS]; + unsigned int primary_axis; + if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1; + else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0; + else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2; + else primary_axis = 3; + unsigned long steps_remaining = delta[primary_axis]; + unsigned long steps_to_take = steps_remaining; + for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2; + interval = axis_interval[primary_axis]; + bool is_print_move = delta[3] > 0; + #ifdef DEBUG_BRESENHAM + log_int("_BRESENHAM - Primary axis", primary_axis); + log_int("_BRESENHAM - Primary axis full speed interval", interval); + log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS); + log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS); #endif - #ifdef EXP_ACCELERATION - unsigned long virtual_full_velocity_steps; - unsigned long full_velocity_steps; + + //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it. + #ifdef RAMP_ACCELERATION + long max_speed_steps_per_second; + long min_speed_steps_per_second; + max_interval = axis_max_interval[primary_axis]; + #ifdef DEBUG_RAMP_ACCELERATION + log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS); + #endif + unsigned long new_axis_max_intervals[NUM_AXIS]; + max_speed_steps_per_second = 100000000 / interval; + min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted? + //Calculate start speeds based on moving axes max start speed constraints. + int slowest_start_axis = primary_axis; + unsigned long slowest_start_axis_max_interval = max_interval; + for(int i = 0; i < NUM_AXIS; i++) + if (axis_steps_remaining[i] >0 && i != primary_axis && axis_max_interval[i] * axis_steps_remaining[i] + / axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) { + slowest_start_axis = i; + slowest_start_axis_max_interval = axis_max_interval[i]; + } + for(int i = 0; i < NUM_AXIS; i++) + if(axis_steps_remaining[i] >0) { + new_axis_max_intervals[i] = slowest_start_axis_max_interval * axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i]; + if(i == primary_axis) { + max_interval = new_axis_max_intervals[i]; + min_speed_steps_per_second = 100000000 / max_interval; + } + } + //Calculate slowest axis plateau time + float slowest_axis_plateau_time = 0; + for(int i=0; i < NUM_AXIS ; i++) { + if(axis_steps_remaining[i] > 0) { + if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, + (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]); + else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, + (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]); + } + } + //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated + steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time; + plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time); + #ifdef DEBUG_RAMP_ACCELERATION + log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis); + log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval); + log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS); + #endif #endif - unsigned long steps_remaining; - unsigned long steps_to_take; - //Do some Bresenham calculations depending on which axis will lead it. - if(steep_y) { - error_x = delta_y / 2; - interval = y_interval; - #ifdef RAMP_ACCELERATION - max_interval = max_y_interval; - if(e_steps_to_take > 0) steps_per_sqr_second = y_steps_per_sqr_second; - else steps_per_sqr_second = y_travel_steps_per_sqr_second; - max_speed_steps_per_second = 100000000 / interval; - min_speed_steps_per_second = 100000000 / max_interval; - float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second; - plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time); - #endif - #ifdef EXP_ACCELERATION - if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * y_steps_per_unit /100; - else virtual_full_velocity_steps = long_travel_move_full_velocity_units * y_steps_per_unit /100; - full_velocity_steps = min(virtual_full_velocity_steps, (delta_y - y_min_constant_speed_steps) / 2); - max_interval = max_y_interval; - min_constant_speed_steps = y_min_constant_speed_steps; - #endif - steps_remaining = delta_y; - steps_to_take = delta_y; - } else if (steep_x) { - error_y = delta_x / 2; - interval = x_interval; - #ifdef RAMP_ACCELERATION - max_interval = max_x_interval; - if(e_steps_to_take > 0) steps_per_sqr_second = x_steps_per_sqr_second; - else steps_per_sqr_second = x_travel_steps_per_sqr_second; - max_speed_steps_per_second = 100000000 / interval; - min_speed_steps_per_second = 100000000 / max_interval; - float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second; - plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time); - #endif - #ifdef EXP_ACCELERATION - if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * x_steps_per_unit /100; - else virtual_full_velocity_steps = long_travel_move_full_velocity_units * x_steps_per_unit /100; - full_velocity_steps = min(virtual_full_velocity_steps, (delta_x - x_min_constant_speed_steps) / 2); - max_interval = max_x_interval; - min_constant_speed_steps = x_min_constant_speed_steps; - #endif - steps_remaining = delta_x; - steps_to_take = delta_x; - } unsigned long steps_done = 0; #ifdef RAMP_ACCELERATION plateau_steps *= 1.01; // This is to compensate we use discrete intervals @@ -1047,32 +1017,48 @@ void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remainin if(interval > max_interval) acceleration_enabled = false; boolean decelerating = false; #endif - #ifdef EXP_ACCELERATION - acceleration_enabled = true; - if(full_velocity_steps == 0) full_velocity_steps++; - if(interval > max_interval) acceleration_enabled = false; - unsigned long full_interval = interval; - if(min_constant_speed_steps >= steps_to_take) { - acceleration_enabled = false; - full_interval = max(max_interval, interval); // choose the min speed between feedrate and acceleration start speed - } - if(full_velocity_steps < virtual_full_velocity_steps && acceleration_enabled) full_interval = max(interval, - max_interval - ((max_interval - full_interval) * full_velocity_steps / virtual_full_velocity_steps)); // choose the min speed between feedrate and speed at full steps - unsigned int steps_acceleration_check = 1; - accelerating = acceleration_enabled; - #endif unsigned long start_move_micros = micros(); - previous_micros_x = start_move_micros*100; - previous_micros_y = previous_micros_x; - previous_micros_z = previous_micros_x; - previous_micros_e = previous_micros_x; + for(int i = 0; i < NUM_AXIS; i++) { + axis_previous_micros[i] = start_move_micros * 100; + } + + #ifdef DISABLE_CHECK_DURING_TRAVEL + //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's + // consider this a print move and perform heat management during it + if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true; + //else, if the move is a retract, consider it as a travel move for the sake of this feature + else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false; + #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL + log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move); + #endif + #endif + + #ifdef DEBUG_MOVE_TIME + unsigned long startmove = micros(); + #endif //move until no more steps remain - while(x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) { - //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp - manage_heater(); - manage_inactivity(2); + while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) { + #ifdef DISABLE_CHECK_DURING_ACC + if(!accelerating && !decelerating) { + //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp + #ifdef DISABLE_CHECK_DURING_TRAVEL + if(is_print_move) + #endif + manage_heater(); + } + #else + #ifdef DISABLE_CHECK_DURING_MOVE + {} //Do nothing + #else + //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp + #ifdef DISABLE_CHECK_DURING_TRAVEL + if(is_print_move) + #endif + manage_heater(); + #endif + #endif #ifdef RAMP_ACCELERATION //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval if (acceleration_enabled && steps_done == 0) { @@ -1107,128 +1093,40 @@ void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remainin accelerating = false; } #endif - #ifdef EXP_ACCELERATION - //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval - if (acceleration_enabled && steps_done < full_velocity_steps && steps_done / full_velocity_steps < 1 && (steps_done % steps_acceleration_check == 0)) { - if(steps_done == 0) { - interval = max_interval; - } else { - interval = max_interval - ((max_interval - full_interval) * steps_done / virtual_full_velocity_steps); - } - } else if (acceleration_enabled && steps_remaining < full_velocity_steps) { - //Else, if acceleration is enabled on this move and we are in the deceleration segment, calculate the current interval - if(steps_remaining == 0) { - interval = max_interval; - } else { - interval = max_interval - ((max_interval - full_interval) * steps_remaining / virtual_full_velocity_steps); - } - accelerating = true; - } else if (steps_done - full_velocity_steps >= 1 || !acceleration_enabled){ - //Else, we are just use the full speed interval as current interval - interval = full_interval; - accelerating = false; - } - #endif //If there are x or y steps remaining, perform Bresenham algorithm - if(x_steps_remaining || y_steps_remaining) { - if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break; - if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break; - if(steep_y) { - timediff = micros() * 100 - previous_micros_y; - while(timediff >= interval && y_steps_remaining > 0) { - steps_done++; - steps_remaining--; - y_steps_remaining--; timediff -= interval; - error_x = error_x - delta_x; - do_y_step(); - if(error_x < 0) { - do_x_step(); x_steps_remaining--; - error_x = error_x + delta_y; + if(axis_steps_remaining[primary_axis]) { + if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break; + if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break; + if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break; + if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break; + if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break; + if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break; + timediff = micros() * 100 - axis_previous_micros[primary_axis]; + while(timediff >= interval && axis_steps_remaining[primary_axis] > 0) { + steps_done++; + steps_remaining--; + axis_steps_remaining[primary_axis]--; timediff -= interval; + do_step_update_micros(primary_axis); + for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) { + axis_error[i] = axis_error[i] - delta[i]; + if(axis_error[i] < 0) { + do_step(i); axis_steps_remaining[i]--; + axis_error[i] = axis_error[i] + delta[primary_axis]; } - #ifdef RAMP_ACCELERATION - if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break; - #endif - #ifdef STEP_DELAY_RATIO - if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000); - #endif - #ifdef STEP_DELAY_MICROS - if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS); - #endif } - } else if (steep_x) { - timediff=micros() * 100 - previous_micros_x; - while(timediff >= interval && x_steps_remaining>0) { - steps_done++; - steps_remaining--; - x_steps_remaining--; timediff -= interval; - error_y = error_y - delta_y; - do_x_step(); - if(error_y < 0) { - do_y_step(); y_steps_remaining--; - error_y = error_y + delta_x; - } - #ifdef RAMP_ACCELERATION - if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break; - #endif - #ifdef STEP_DELAY_RATIO - if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000); - #endif - #ifdef STEP_DELAY_MICROS - if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS); - #endif - } - } - } - #ifdef RAMP_ACCELERATION - if((x_steps_remaining>0 || y_steps_remaining>0) && - steps_to_take > 0 && - (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating))) continue; - #endif - - //If there are z steps remaining, check if z steps must be taken - if(z_steps_remaining) { - if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break; - timediff = micros() * 100-previous_micros_z; - while(timediff >= z_interval && z_steps_remaining) { - do_z_step(); - z_steps_remaining--; - timediff -= z_interval; #ifdef STEP_DELAY_RATIO - if(timediff >= z_interval) delayMicroseconds(long_step_delay_ratio * z_interval / 10000); + if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000); #endif #ifdef STEP_DELAY_MICROS - if(timediff >= z_interval) delayMicroseconds(STEP_DELAY_MICROS); - #endif - } - } - - //If there are e steps remaining, check if e steps must be taken - if(e_steps_remaining){ - if (x_steps_to_take + y_steps_to_take <= 0) timediff = micros()*100 - previous_micros_e; - unsigned int final_e_steps_remaining = 0; - if (steep_x && x_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * x_steps_remaining / x_steps_to_take; - else if (steep_y && y_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * y_steps_remaining / y_steps_to_take; - //If this move has X or Y steps, let E follow the Bresenham pace - if (final_e_steps_remaining > 0) while(e_steps_remaining > final_e_steps_remaining) { do_e_step(); e_steps_remaining--;} - else if (x_steps_to_take + y_steps_to_take > 0) while(e_steps_remaining) { do_e_step(); e_steps_remaining--;} - //Else, normally check if e steps must be taken - else while (timediff >= e_interval && e_steps_remaining) { - do_e_step(); - e_steps_remaining--; - timediff -= e_interval; - #ifdef STEP_DELAY_RATIO - if(timediff >= e_interval) delayMicroseconds(long_step_delay_ratio * e_interval / 10000); - #endif - #ifdef STEP_DELAY_MICROS - if(timediff >= e_interval) delayMicroseconds(STEP_DELAY_MICROS); + if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS); #endif } } } + #ifdef DEBUG_MOVE_TIME + log_ulong("_MOVE_TIME - This move took", micros()-startmove); + #endif if(DISABLE_X) disable_x(); if(DISABLE_Y) disable_y(); @@ -1236,47 +1134,21 @@ void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remainin if(DISABLE_E) disable_e(); // Update current position partly based on direction, we probably can combine this with the direction code above... - if (destination_x > current_x) current_x = current_x + x_steps_to_take / x_steps_per_unit; - else current_x = current_x - x_steps_to_take / x_steps_per_unit; - if (destination_y > current_y) current_y = current_y + y_steps_to_take / y_steps_per_unit; - else current_y = current_y - y_steps_to_take / y_steps_per_unit; - if (destination_z > current_z) current_z = current_z + z_steps_to_take / z_steps_per_unit; - else current_z = current_z - z_steps_to_take / z_steps_per_unit; - if (destination_e > current_e) current_e = current_e + e_steps_to_take / e_steps_per_unit; - else current_e = current_e - e_steps_to_take / e_steps_per_unit; -} - - -inline void do_x_step() -{ - digitalWrite(X_STEP_PIN, HIGH); - previous_micros_x += interval; - //delayMicroseconds(3); - digitalWrite(X_STEP_PIN, LOW); + for(int i=0; i < NUM_AXIS; i++) { + if (destination[i] > current_position[i]) current_position[i] = current_position[i] + move_steps_to_take[i] / axis_steps_per_unit[i]; + else current_position[i] = current_position[i] - move_steps_to_take[i] / axis_steps_per_unit[i]; + } } -inline void do_y_step() -{ - digitalWrite(Y_STEP_PIN, HIGH); - previous_micros_y += interval; - //delayMicroseconds(3); - digitalWrite(Y_STEP_PIN, LOW); +inline void do_step_update_micros(int axis) { + digitalWrite(STEP_PIN[axis], HIGH); + axis_previous_micros[axis] += interval; + digitalWrite(STEP_PIN[axis], LOW); } -inline void do_z_step() -{ - digitalWrite(Z_STEP_PIN, HIGH); - previous_micros_z += z_interval; - //delayMicroseconds(3); - digitalWrite(Z_STEP_PIN, LOW); -} - -inline void do_e_step() -{ - digitalWrite(E_STEP_PIN, HIGH); - previous_micros_e += e_interval; - //delayMicroseconds(3); - digitalWrite(E_STEP_PIN, LOW); +inline void do_step(int axis) { + digitalWrite(STEP_PIN[axis], HIGH); + digitalWrite(STEP_PIN[axis], LOW); } inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); } @@ -1352,6 +1224,10 @@ inline void manage_heater() previous_millis_heater = millis(); #ifdef HEATER_USES_THERMISTOR current_raw = analogRead(TEMP_0_PIN); + #ifdef DEBUG_HEAT_MGMT + log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw); + log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS); + #endif // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, // this switches it up so that the reading appears lower than target for the control logic. current_raw = 1023 - current_raw; @@ -1414,7 +1290,11 @@ inline void manage_heater() #ifdef BED_USES_THERMISTOR - current_bed_raw = analogRead(TEMP_1_PIN); + current_bed_raw = analogRead(TEMP_1_PIN); + #ifdef DEBUG_HEAT_MGMT + log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw); + log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS); + #endif // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, // this switches it up so that the reading appears lower than target for the control logic. @@ -1590,3 +1470,78 @@ inline void manage_inactivity(byte debug) { if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); } } + +#ifdef DEBUG +void log_message(char* message) { + Serial.print("DEBUG"); Serial.println(message); +} + +void log_bool(char* message, bool value) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); +} + +void log_int(char* message, int value) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); +} + +void log_long(char* message, long value) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); +} + +void log_float(char* message, float value) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); +} + +void log_uint(char* message, unsigned int value) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); +} + +void log_ulong(char* message, unsigned long value) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); +} + +void log_int_array(char* message, int value[], int array_lenght) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); + for(int i=0; i < array_lenght; i++){ + Serial.print(value[i]); + if(i != array_lenght-1) Serial.print(", "); + } + Serial.println("}"); +} + +void log_long_array(char* message, long value[], int array_lenght) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); + for(int i=0; i < array_lenght; i++){ + Serial.print(value[i]); + if(i != array_lenght-1) Serial.print(", "); + } + Serial.println("}"); +} + +void log_float_array(char* message, float value[], int array_lenght) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); + for(int i=0; i < array_lenght; i++){ + Serial.print(value[i]); + if(i != array_lenght-1) Serial.print(", "); + } + Serial.println("}"); +} + +void log_uint_array(char* message, unsigned int value[], int array_lenght) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); + for(int i=0; i < array_lenght; i++){ + Serial.print(value[i]); + if(i != array_lenght-1) Serial.print(", "); + } + Serial.println("}"); +} + +void log_ulong_array(char* message, unsigned long value[], int array_lenght) { + Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); + for(int i=0; i < array_lenght; i++){ + Serial.print(value[i]); + if(i != array_lenght-1) Serial.print(", "); + } + Serial.println("}"); +} +#endif diff --git a/Tonokip_Firmware/configuration.h b/Tonokip_Firmware/configuration.h index 2bd4e6a..2716de2 100644 --- a/Tonokip_Firmware/configuration.h +++ b/Tonokip_Firmware/configuration.h @@ -10,7 +10,7 @@ //Min step delay in microseconds. If you are experiencing missing steps, try to raise the delay microseconds, but be aware this // If you enable this, make sure STEP_DELAY_RATIO is disabled. -#define STEP_DELAY_MICROS 1 +//#define STEP_DELAY_MICROS 1 //Step delay over interval ratio. If you are still experiencing missing steps, try to uncomment the following line, but be aware this //If you enable this, make sure STEP_DELAY_MICROS is disabled. @@ -19,22 +19,12 @@ //Comment this to disable ramp acceleration #define RAMP_ACCELERATION 1 -//Uncomment this to enable exponential acceleration -//#define EXP_ACCELERATION 1 - //Acceleration settings #ifdef RAMP_ACCELERATION -float min_units_per_second = 35.0; // the minimum feedrate -long max_acceleration_units_per_sq_second = 750; // Max acceleration in mm/s^2 for printing moves -long max_travel_acceleration_units_per_sq_second = 1500; // Max acceleration in mm/s^2 for travel moves -#endif -#ifdef EXP_ACCELERATION -float full_velocity_units = 10; // the units between minimum and G1 move feedrate -float travel_move_full_velocity_units = 10; // used for travel moves -float min_units_per_second = 35.0; // the minimum feedrate -float min_constant_speed_units = 2; // the minimum units of an accelerated move that must be done at constant speed - // Note that if the move is shorter than this value, acceleration won't be perfomed, - // but will be done at the minimum between min_units_per_seconds and move feedrate speeds. +//X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. +float max_start_speed_units_per_second[] = {25.0,25.0,0.2,10.0}; +long max_acceleration_units_per_sq_second[] = {1000,1000,50,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts +long max_travel_acceleration_units_per_sq_second[] = {500,500,50}; // X, Y, Z max acceleration in mm/s^2 for travel moves #endif // AD595 THERMOCOUPLE SUPPORT UNTESTED... USE WITH CAUTION!!!! @@ -51,8 +41,18 @@ float min_constant_speed_units = 2; // the minimum units of an accelerated move #endif //How often should the heater check for new temp readings, in milliseconds -#define HEATER_CHECK_INTERVAL 50 +#define HEATER_CHECK_INTERVAL 500 #define BED_CHECK_INTERVAL 5000 +//Comment the following line to enable heat management during acceleration +#define DISABLE_CHECK_DURING_ACC +#ifndef DISABLE_CHECK_DURING_ACC + //Uncomment the following line to disable heat management during the move + //#define DISABLE_CHECK_DURING_MOVE +#endif +//Uncomment the following line to disable heat management during travel moves (and extruder-only moves, eg: retracts), strongly recommended if you are missing steps mid print. +//Probably this should remain commented if are using PID. +//It also defines the max milliseconds interval after which a travel move is not considered so for the sake of this feature. +#define DISABLE_CHECK_DURING_TRAVEL 1000 //Experimental temperature smoothing - only uncomment this if your temp readings are noisy //#define SMOOTHING 1 @@ -86,19 +86,12 @@ float min_constant_speed_units = 2; // the minimum units of an accelerated move // units are in millimeters or whatever length unit you prefer: inches,football-fields,parsecs etc //Calibration variables -float x_steps_per_unit = 80.376; -float y_steps_per_unit = 80.376; -float z_steps_per_unit = 3200/1.25; -float e_steps_per_unit = 16; -float max_feedrate = 200000; //mmm, acceleration! -float max_z_feedrate = 120; - +const int NUM_AXIS = 4; // The axis order in all axis related arrays is X, Y, Z, E +bool axis_relative_modes[] = {false, false, false, false}; +float axis_steps_per_unit[] = {80.376,80.376,3200/1.25,16}; //For SAE Prusa mendeel float z_steps_per_unit = should be 3200/1.411 for 5/16-18 rod and 3200/1.058 for 5/16-24 -//float x_steps_per_unit = 10.047; -//float y_steps_per_unit = 10.047; -//float z_steps_per_unit = 833.398; -//float e_steps_per_unit = 0.706; -//float max_feedrate = 3000; +//float axis_steps_per_unit[] = {10.047,10.047,833.398,0.706}; +float max_feedrate[] = {200000, 200000, 240, 500000}; //mmm, acceleration! //For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 const bool X_ENABLE_ON = 0; @@ -151,6 +144,15 @@ const int Z_MAX_LENGTH = 100; #define BAUDRATE 115200 - +//Uncomment the following line to enable debugging. You can better control debugging below the following line +//#define DEBUG +#ifdef DEBUG + //#define DEBUG_PREPARE_MOVE //Enable this to debug prepare_move() function + //#define DEBUG_BRESENHAM //Enable this to debug the Bresenham algorithm + //#define DEBUG_RAMP_ACCELERATION //Enable this to debug all constant acceleration info + //#define DEBUG_MOVE_TIME //Enable this to time each move and print the result + //#define DEBUG_HEAT_MGMT //Enable this to debug heat management. WARNING, this will cause axes to jitter! + //#define DEBUG_DISABLE_CHECK_DURING_TRAVEL //Debug the namesake feature, see above in this file +#endif #endif |