summaryrefslogtreecommitdiff
path: root/Tonokip_Firmware
diff options
context:
space:
mode:
Diffstat (limited to 'Tonokip_Firmware')
-rw-r--r--Tonokip_Firmware/Tonokip_Firmware.pde828
-rw-r--r--Tonokip_Firmware/configuration.h60
2 files changed, 423 insertions, 465 deletions
diff --git a/Tonokip_Firmware/Tonokip_Firmware.pde b/Tonokip_Firmware/Tonokip_Firmware.pde
index fc49da1..4528324 100644
--- a/Tonokip_Firmware/Tonokip_Firmware.pde
+++ b/Tonokip_Firmware/Tonokip_Firmware.pde
@@ -57,40 +57,42 @@
//Stepper Movement Variables
-bool direction_x, direction_y, direction_z, direction_e;
-unsigned long previous_micros = 0, previous_micros_x = 0, previous_micros_y = 0, previous_micros_z = 0, previous_micros_e = 0, previous_millis_heater, previous_millis_bed_heater;
-unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take;
+char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+bool move_direction[NUM_AXIS];
+const int STEP_PIN[NUM_AXIS] = {X_STEP_PIN, Y_STEP_PIN, Z_STEP_PIN, E_STEP_PIN};
+unsigned long axis_previous_micros[NUM_AXIS];
+unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater;
+unsigned long move_steps_to_take[NUM_AXIS];
#ifdef RAMP_ACCELERATION
- unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit);
- unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit);
+ unsigned long axis_max_interval[] = {100000000.0 / (max_start_speed_units_per_second[0] * axis_steps_per_unit[0]),
+ 100000000.0 / (max_start_speed_units_per_second[1] * axis_steps_per_unit[1]),
+ 100000000.0 / (max_start_speed_units_per_second[2] * axis_steps_per_unit[2]),
+ 100000000.0 / (max_start_speed_units_per_second[3] * axis_steps_per_unit[3])}; //TODO: refactor all things like this in a function, or move to setup()
+ // in a for loop
unsigned long max_interval;
- unsigned long x_steps_per_sqr_second = max_acceleration_units_per_sq_second * x_steps_per_unit;
- unsigned long y_steps_per_sqr_second = max_acceleration_units_per_sq_second * y_steps_per_unit;
- unsigned long x_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * x_steps_per_unit;
- unsigned long y_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * y_steps_per_unit;
+ unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0],
+ max_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2],
+ max_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]};
+ unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0],
+ max_travel_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_travel_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2],
+ max_travel_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]};
unsigned long steps_per_sqr_second, plateau_steps;
#endif
-#ifdef EXP_ACCELERATION
- unsigned long long_full_velocity_units = full_velocity_units * 100;
- unsigned long long_travel_move_full_velocity_units = travel_move_full_velocity_units * 100;
- unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit);
- unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit);
- unsigned long max_interval;
- unsigned long x_min_constant_speed_steps = min_constant_speed_units * x_steps_per_unit,
- y_min_constant_speed_steps = min_constant_speed_units * y_steps_per_unit, min_constant_speed_steps;
-#endif
boolean acceleration_enabled = false, accelerating = false;
unsigned long interval;
-float destination_x = 0.0, destination_y = 0.0, destination_z = 0.0, destination_e = 0.0;
-float current_x = 0.0, current_y = 0.0, current_z = 0.0, current_e = 0.0;
-long x_interval, y_interval, z_interval, e_interval; // for speed delay
-float feedrate = 1500, next_feedrate, z_feedrate, saved_feedrate;
+float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
+float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
+long axis_interval[NUM_AXIS]; // for speed delay
bool home_all_axis = true;
+float feedrate = 1500, next_feedrate, saved_feedrate;
float time_for_move;
long gcode_N, gcode_LastN;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
long timediff = 0;
+//experimental feedrate calc
+float d = 0;
+float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
#ifdef STEP_DELAY_RATIO
long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
#endif
@@ -208,11 +210,9 @@ void setup()
for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false;
}
+
//Initialize Step Pins
- if(X_STEP_PIN > -1) pinMode(X_STEP_PIN,OUTPUT);
- if(Y_STEP_PIN > -1) pinMode(Y_STEP_PIN,OUTPUT);
- if(Z_STEP_PIN > -1) pinMode(Z_STEP_PIN,OUTPUT);
- if(E_STEP_PIN > -1) pinMode(E_STEP_PIN,OUTPUT);
+ for(int i=0; i < NUM_AXIS; i++) if(STEP_PIN[i] > -1) pinMode(STEP_PIN[i],OUTPUT);
//Initialize Dir Pins
if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT);
@@ -268,6 +268,7 @@ void setup()
initsd();
#endif
+
}
@@ -437,9 +438,6 @@ inline bool code_seen(char code)
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
- //experimental feedrate calc
-float d = 0;
-float xdiff = 0, ydiff = 0, zdiff = 0, ediff = 0;
inline void process_commands()
{
@@ -452,6 +450,9 @@ inline void process_commands()
{
case 0: // G0 -> G1
case 1: // G1
+ #ifdef DISABLE_CHECK_DURING_ACC || DISABLE_CHECK_DURING_MOVE || DISABLE_CHECK_DURING_TRAVEL
+ manage_heater();
+ #endif
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
@@ -469,74 +470,70 @@ inline void process_commands()
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
- destination_x = 0;
- current_x = 0;
- destination_y = 0;
- current_y = 0;
- destination_z = 0;
- current_z = 0;
- destination_e = 0;
- current_e = 0;
+ for(int i=0; i < NUM_AXIS; i++) {
+ destination[i] = 0;
+ current_position[i] = 0;
+ }
feedrate = 0;
-
- home_all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')));
+
+ home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen('X'))) {
if((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) {
- current_x = 0;
- destination_x = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
- feedrate = min_units_per_second * 60;
+ current_position[0] = 0;
+ destination[0] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
+ feedrate = max_start_speed_units_per_second[0] * 60;
prepare_move();
-
- current_x = 0;
- destination_x = -1 * X_HOME_DIR;
+
+ current_position[0] = 0;
+ destination[0] = -1 * X_HOME_DIR;
prepare_move();
-
- destination_x = 10 * X_HOME_DIR;
+
+ destination[0] = 10 * X_HOME_DIR;
prepare_move();
-
- current_x = 0;
- destination_x = 0;
+
+ current_position[0] = 0;
+ destination[0] = 0;
feedrate = 0;
}
}
- if((home_all_axis) || (code_seen('Y'))) {
+ if((home_all_axis) || (code_seen('X'))) {
if((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) {
- current_y = 0;
- destination_y = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- feedrate = min_units_per_second * 60;
+ current_position[1] = 0;
+ destination[1] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+ feedrate = max_start_speed_units_per_second[1] * 60;
prepare_move();
-
- current_y = 0;
- destination_y = -1 * Y_HOME_DIR;
+
+ current_position[1] = 0;
+ destination[1] = -1 * Y_HOME_DIR;
prepare_move();
-
- destination_y = 10 * Y_HOME_DIR;
+
+ destination[1] = 10 * Y_HOME_DIR;
prepare_move();
-
- current_y = 0;
- destination_y = 0;
+
+ current_position[1] = 0;
+ destination[1] = 0;
feedrate = 0;
}
}
- if((home_all_axis) || (code_seen('Z'))) {
+ if((home_all_axis) || (code_seen('X'))) {
if((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) {
- current_z = 0;
- destination_z = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- feedrate = max_z_feedrate/2;
+ current_position[2] = 0;
+ destination[2] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+ feedrate = max_feedrate[2]/2;
prepare_move();
-
- current_z = 0;
- destination_z = -1 * Z_HOME_DIR;
+
+ current_position[2] = 0;
+ destination[2] = -1 * Z_HOME_DIR;
prepare_move();
-
- destination_z = 10 * Z_HOME_DIR;
+
+ destination[2] = 10 * Z_HOME_DIR;
prepare_move();
-
- current_z = 0;
- destination_z = 0;
+
+ current_position[2] = 0;
+ destination[2] = 0;
feedrate = 0;
}
}
@@ -551,10 +548,9 @@ inline void process_commands()
relative_mode = true;
break;
case 92: // G92
- if(code_seen('X')) current_x = code_value();
- if(code_seen('Y')) current_y = code_value();
- if(code_seen('Z')) current_z = code_value();
- if(code_seen('E')) current_e = code_value();
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) current_position[i] = code_value();
+ }
break;
}
@@ -751,10 +747,10 @@ inline void process_commands()
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
break;
case 82:
- relative_mode_e = false;
+ axis_relative_modes[3] = false;
break;
case 83:
- relative_mode_e = true;
+ axis_relative_modes[3] = true;
break;
case 84:
if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; }
@@ -765,32 +761,44 @@ inline void process_commands()
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
- if(code_seen('X')) x_steps_per_unit = code_value();
- if(code_seen('Y')) y_steps_per_unit = code_value();
- if(code_seen('Z')) z_steps_per_unit = code_value();
- if(code_seen('E')) e_steps_per_unit = code_value();
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
+ }
+
+ //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
+ // should also be used in setup() as well
+ #ifdef RAMP_ACCELERATION
+ long temp_max_intervals[NUM_AXIS];
+ for(int i=0; i < NUM_AXIS; i++) {
+ axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
+ // all steps_per_unit related variables
+ }
+ #endif
break;
case 115: // M115
Serial.println("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break;
case 114: // M114
Serial.print("X:");
- Serial.print(current_x);
+ Serial.print(current_position[0]);
Serial.print("Y:");
- Serial.print(current_y);
+ Serial.print(current_position[1]);
Serial.print("Z:");
- Serial.print(current_z);
+ Serial.print(current_position[2]);
Serial.print("E:");
- Serial.println(current_e);
+ Serial.println(current_position[3]);
break;
#ifdef RAMP_ACCELERATION
+ //TODO: update for all axis, use for loop
case 201: // M201
- if(code_seen('X')) x_steps_per_sqr_second = code_value() * x_steps_per_unit;
- if(code_seen('Y')) y_steps_per_sqr_second = code_value() * y_steps_per_unit;
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
break;
case 202: // M202
- if(code_seen('X')) x_travel_steps_per_sqr_second = code_value() * x_steps_per_unit;
- if(code_seen('Y')) y_travel_steps_per_sqr_second = code_value() * y_steps_per_unit;
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
break;
#endif
}
@@ -826,14 +834,10 @@ inline void ClearToSend()
inline void get_coordinates()
{
- if(code_seen('X')) destination_x = (float)code_value() + relative_mode*current_x;
- else destination_x = current_x; //Are these else lines really needed?
- if(code_seen('Y')) destination_y = (float)code_value() + relative_mode*current_y;
- else destination_y = current_y;
- if(code_seen('Z')) destination_z = (float)code_value() + relative_mode*current_z;
- else destination_z = current_z;
- if(code_seen('E')) destination_e = (float)code_value() + (relative_mode_e || relative_mode)*current_e;
- else destination_e = current_e;
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+ else destination[i] = current_position[i]; //Are these else lines really needed?
+ }
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
@@ -843,202 +847,169 @@ inline void get_coordinates()
inline void prepare_move()
{
//Find direction
- if(destination_x >= current_x) direction_x = 1;
- else direction_x = 0;
- if(destination_y >= current_y) direction_y = 1;
- else direction_y = 0;
- if(destination_z >= current_z) direction_z = 1;
- else direction_z = 0;
- if(destination_e >= current_e) direction_e = 1;
- else direction_e = 0;
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(destination[i] >= current_position[i]) move_direction[i] = 1;
+ else move_direction[i] = 0;
+ }
if (min_software_endstops) {
- if (destination_x < 0) destination_x = 0.0;
- if (destination_y < 0) destination_y = 0.0;
- if (destination_z < 0) destination_z = 0.0;
+ if (destination[0] < 0) destination[0] = 0.0;
+ if (destination[1] < 0) destination[1] = 0.0;
+ if (destination[2] < 0) destination[2] = 0.0;
}
if (max_software_endstops) {
- if (destination_x > X_MAX_LENGTH) destination_x = X_MAX_LENGTH;
- if (destination_y > Y_MAX_LENGTH) destination_y = Y_MAX_LENGTH;
- if (destination_z > Z_MAX_LENGTH) destination_z = Z_MAX_LENGTH;
+ if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH;
+ if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH;
+ if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH;
}
-
- if(feedrate > max_feedrate) feedrate = max_feedrate;
- if(feedrate > max_z_feedrate) z_feedrate = max_z_feedrate;
- else z_feedrate = feedrate;
-
- xdiff = (destination_x - current_x);
- ydiff = (destination_y - current_y);
- zdiff = (destination_z - current_z);
- ediff = (destination_e - current_e);
- x_steps_to_take = abs(xdiff) * x_steps_per_unit;
- y_steps_to_take = abs(ydiff) * y_steps_per_unit;
- z_steps_to_take = abs(zdiff) * z_steps_per_unit;
- e_steps_to_take = abs(ediff) * e_steps_per_unit;
+ for(int i=0; i < NUM_AXIS; i++) {
+ axis_diff[i] = destination[i] - current_position[i];
+ move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i];
+ }
if(feedrate < 10)
feedrate = 10;
- /*
- //experimental feedrate calc
- if(abs(xdiff) > 0.1 && abs(ydiff) > 0.1)
- d = sqrt(xdiff * xdiff + ydiff * ydiff);
- else if(abs(xdiff) > 0.1)
- d = abs(xdiff);
- else if(abs(ydiff) > 0.1)
- d = abs(ydiff);
- else if(abs(zdiff) > 0.05)
- d = abs(zdiff);
- else if(abs(ediff) > 0.1)
- d = abs(ediff);
- else d = 1; //extremely slow move, should be okay for moves under 0.1mm
- time_for_move = (xdiff / (feedrate / 60000000) );
- //time = 60000000 * dist / feedrate
- //int feedz = (60000000 * zdiff) / time_for_move;
- //if(feedz > maxfeed)
- */
- #define X_TIME_FOR_MOVE ((float)x_steps_to_take / (x_steps_per_unit*feedrate/60000000))
- #define Y_TIME_FOR_MOVE ((float)y_steps_to_take / (y_steps_per_unit*feedrate/60000000))
- #define Z_TIME_FOR_MOVE ((float)z_steps_to_take / (z_steps_per_unit*z_feedrate/60000000))
- #define E_TIME_FOR_MOVE ((float)e_steps_to_take / (e_steps_per_unit*feedrate/60000000))
-
- time_for_move = max(X_TIME_FOR_MOVE, Y_TIME_FOR_MOVE);
- time_for_move = max(time_for_move, Z_TIME_FOR_MOVE);
- if(time_for_move <= 0) time_for_move = max(time_for_move, E_TIME_FOR_MOVE);
-
- if(x_steps_to_take) x_interval = time_for_move / x_steps_to_take * 100;
- if(y_steps_to_take) y_interval = time_for_move / y_steps_to_take * 100;
- if(z_steps_to_take) z_interval = time_for_move / z_steps_to_take * 100;
- if(e_steps_to_take && (x_steps_to_take + y_steps_to_take <= 0) ) e_interval = time_for_move / e_steps_to_take * 100;
- //#define DEBUGGING false
- #if 0
- if(0) {
- Serial.print("destination_x: "); Serial.println(destination_x);
- Serial.print("current_x: "); Serial.println(current_x);
- Serial.print("x_steps_to_take: "); Serial.println(x_steps_to_take);
- Serial.print("X_TIME_FOR_MVE: "); Serial.println(X_TIME_FOR_MOVE);
- Serial.print("x_interval: "); Serial.println(x_interval);
- Serial.println("");
- Serial.print("destination_y: "); Serial.println(destination_y);
- Serial.print("current_y: "); Serial.println(current_y);
- Serial.print("y_steps_to_take: "); Serial.println(y_steps_to_take);
- Serial.print("Y_TIME_FOR_MVE: "); Serial.println(Y_TIME_FOR_MOVE);
- Serial.print("y_interval: "); Serial.println(y_interval);
- Serial.println("");
- Serial.print("destination_z: "); Serial.println(destination_z);
- Serial.print("current_z: "); Serial.println(current_z);
- Serial.print("z_steps_to_take: "); Serial.println(z_steps_to_take);
- Serial.print("Z_TIME_FOR_MVE: "); Serial.println(Z_TIME_FOR_MOVE);
- Serial.print("z_interval: "); Serial.println(z_interval);
- Serial.println("");
- Serial.print("destination_e: "); Serial.println(destination_e);
- Serial.print("current_e: "); Serial.println(current_e);
- Serial.print("e_steps_to_take: "); Serial.println(e_steps_to_take);
- Serial.print("E_TIME_FOR_MVE: "); Serial.println(E_TIME_FOR_MOVE);
- Serial.print("e_interval: "); Serial.println(e_interval);
- Serial.println("");
+ //Feedrate calc based on XYZ travel distance
+ float xy_d;
+ if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0 || abs(axis_diff[2])) {
+ xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]);
+ d = sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]);
}
+ else if(abs(axis_diff[3]) > 0)
+ d = abs(axis_diff[3]);
+ #ifdef DEBUG_PREPARE_MOVE
+ else {
+ log_message("_PREPARE_MOVE - No steps to take!");
+ }
#endif
+ time_for_move = (d / (feedrate / 60000000.0) );
+ //Check max feedrate for each axis is not violated, update time_for_move if necessary
+ for(int i = 0; i < NUM_AXIS; i++) {
+ if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) {
+ time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0));
+ }
+ }
+ //Calculate the full speed stepper interval for each axis
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100;
+ }
- linear_move(x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take); // make the move
+ #ifdef DEBUG_PREPARE_MOVE
+ log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d);
+ log_float("_PREPARE_MOVE - Move distance on the XYZ space", d);
+ log_float("_PREPARE_MOVE - Commanded feedrate", feedrate);
+ log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move);
+ log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS);
+ log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS);
+ log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS);
+ log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS);
+ #endif
+
+ unsigned long move_steps[NUM_AXIS];
+ for(int i=0; i < NUM_AXIS; i++)
+ move_steps[i] = move_steps_to_take[i];
+ linear_move(move_steps); // make the move
}
-void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remaining, unsigned long z_steps_remaining, unsigned long e_steps_remaining) // make linear move with preset speeds and destinations, see G0 and G1
+void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1
{
//Determine direction of movement
- if (destination_x > current_x) digitalWrite(X_DIR_PIN,!INVERT_X_DIR);
+ if (destination[0] > current_position[0]) digitalWrite(X_DIR_PIN,!INVERT_X_DIR);
else digitalWrite(X_DIR_PIN,INVERT_X_DIR);
- if (destination_y > current_y) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR);
+ if (destination[1] > current_position[1]) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR);
else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR);
- if (destination_z > current_z) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR);
+ if (destination[2] > current_position[2]) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR);
else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR);
- if (destination_e > current_e) digitalWrite(E_DIR_PIN,!INVERT_E_DIR);
+ if (destination[3] > current_position[3]) digitalWrite(E_DIR_PIN,!INVERT_E_DIR);
else digitalWrite(E_DIR_PIN,INVERT_E_DIR);
- if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
- if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
- if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
- if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
- if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
- if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
+ if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0;
+ if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0;
+ if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0;
+ if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0;
+ if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0;
+ if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0;
//Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
- if(x_steps_remaining) enable_x();
- if(y_steps_remaining) enable_y();
- if(z_steps_remaining) { enable_z(); do_z_step(); z_steps_remaining--; }
- if(e_steps_remaining) { enable_e(); do_e_step(); e_steps_remaining--; }
+ // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram,
+ // but will reduce code size
+ if(axis_steps_remaining[0]) enable_x();
+ if(axis_steps_remaining[1]) enable_y();
+ if(axis_steps_remaining[2]) enable_z();
+ if(axis_steps_remaining[3]) enable_e();
//Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm.
- unsigned int delta_x = x_steps_remaining;
- unsigned long x_interval_nanos;
- unsigned int delta_y = y_steps_remaining;
- unsigned long y_interval_nanos;
- unsigned int delta_z = z_steps_remaining;
- unsigned long z_interval_nanos;
- boolean steep_y = delta_y > delta_x;// && delta_y > delta_e && delta_y > delta_z;
- boolean steep_x = delta_x >= delta_y;// && delta_x > delta_e && delta_x > delta_z;
- //boolean steep_z = delta_z > delta_x && delta_z > delta_y && delta_z > delta_e;
- int error_x;
- int error_y;
- int error_z;
- #ifdef RAMP_ACCELERATION
- long max_speed_steps_per_second;
- long min_speed_steps_per_second;
+ unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes
+ long axis_error[NUM_AXIS];
+ unsigned int primary_axis;
+ if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1;
+ else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0;
+ else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2;
+ else primary_axis = 3;
+ unsigned long steps_remaining = delta[primary_axis];
+ unsigned long steps_to_take = steps_remaining;
+ for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2;
+ interval = axis_interval[primary_axis];
+ bool is_print_move = delta[3] > 0;
+ #ifdef DEBUG_BRESENHAM
+ log_int("_BRESENHAM - Primary axis", primary_axis);
+ log_int("_BRESENHAM - Primary axis full speed interval", interval);
+ log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS);
+ log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS);
#endif
- #ifdef EXP_ACCELERATION
- unsigned long virtual_full_velocity_steps;
- unsigned long full_velocity_steps;
+
+ //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it.
+ #ifdef RAMP_ACCELERATION
+ long max_speed_steps_per_second;
+ long min_speed_steps_per_second;
+ max_interval = axis_max_interval[primary_axis];
+ #ifdef DEBUG_RAMP_ACCELERATION
+ log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS);
+ #endif
+ unsigned long new_axis_max_intervals[NUM_AXIS];
+ max_speed_steps_per_second = 100000000 / interval;
+ min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted?
+ //Calculate start speeds based on moving axes max start speed constraints.
+ int slowest_start_axis = primary_axis;
+ unsigned long slowest_start_axis_max_interval = max_interval;
+ for(int i = 0; i < NUM_AXIS; i++)
+ if (axis_steps_remaining[i] >0 && i != primary_axis && axis_max_interval[i] * axis_steps_remaining[i]
+ / axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) {
+ slowest_start_axis = i;
+ slowest_start_axis_max_interval = axis_max_interval[i];
+ }
+ for(int i = 0; i < NUM_AXIS; i++)
+ if(axis_steps_remaining[i] >0) {
+ new_axis_max_intervals[i] = slowest_start_axis_max_interval * axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i];
+ if(i == primary_axis) {
+ max_interval = new_axis_max_intervals[i];
+ min_speed_steps_per_second = 100000000 / max_interval;
+ }
+ }
+ //Calculate slowest axis plateau time
+ float slowest_axis_plateau_time = 0;
+ for(int i=0; i < NUM_AXIS ; i++) {
+ if(axis_steps_remaining[i] > 0) {
+ if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
+ (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]);
+ else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
+ (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]);
+ }
+ }
+ //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated
+ steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time;
+ plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time);
+ #ifdef DEBUG_RAMP_ACCELERATION
+ log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis);
+ log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval);
+ log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS);
+ #endif
#endif
- unsigned long steps_remaining;
- unsigned long steps_to_take;
- //Do some Bresenham calculations depending on which axis will lead it.
- if(steep_y) {
- error_x = delta_y / 2;
- interval = y_interval;
- #ifdef RAMP_ACCELERATION
- max_interval = max_y_interval;
- if(e_steps_to_take > 0) steps_per_sqr_second = y_steps_per_sqr_second;
- else steps_per_sqr_second = y_travel_steps_per_sqr_second;
- max_speed_steps_per_second = 100000000 / interval;
- min_speed_steps_per_second = 100000000 / max_interval;
- float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second;
- plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time);
- #endif
- #ifdef EXP_ACCELERATION
- if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * y_steps_per_unit /100;
- else virtual_full_velocity_steps = long_travel_move_full_velocity_units * y_steps_per_unit /100;
- full_velocity_steps = min(virtual_full_velocity_steps, (delta_y - y_min_constant_speed_steps) / 2);
- max_interval = max_y_interval;
- min_constant_speed_steps = y_min_constant_speed_steps;
- #endif
- steps_remaining = delta_y;
- steps_to_take = delta_y;
- } else if (steep_x) {
- error_y = delta_x / 2;
- interval = x_interval;
- #ifdef RAMP_ACCELERATION
- max_interval = max_x_interval;
- if(e_steps_to_take > 0) steps_per_sqr_second = x_steps_per_sqr_second;
- else steps_per_sqr_second = x_travel_steps_per_sqr_second;
- max_speed_steps_per_second = 100000000 / interval;
- min_speed_steps_per_second = 100000000 / max_interval;
- float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second;
- plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time);
- #endif
- #ifdef EXP_ACCELERATION
- if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * x_steps_per_unit /100;
- else virtual_full_velocity_steps = long_travel_move_full_velocity_units * x_steps_per_unit /100;
- full_velocity_steps = min(virtual_full_velocity_steps, (delta_x - x_min_constant_speed_steps) / 2);
- max_interval = max_x_interval;
- min_constant_speed_steps = x_min_constant_speed_steps;
- #endif
- steps_remaining = delta_x;
- steps_to_take = delta_x;
- }
unsigned long steps_done = 0;
#ifdef RAMP_ACCELERATION
plateau_steps *= 1.01; // This is to compensate we use discrete intervals
@@ -1047,32 +1018,48 @@ void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remainin
if(interval > max_interval) acceleration_enabled = false;
boolean decelerating = false;
#endif
- #ifdef EXP_ACCELERATION
- acceleration_enabled = true;
- if(full_velocity_steps == 0) full_velocity_steps++;
- if(interval > max_interval) acceleration_enabled = false;
- unsigned long full_interval = interval;
- if(min_constant_speed_steps >= steps_to_take) {
- acceleration_enabled = false;
- full_interval = max(max_interval, interval); // choose the min speed between feedrate and acceleration start speed
- }
- if(full_velocity_steps < virtual_full_velocity_steps && acceleration_enabled) full_interval = max(interval,
- max_interval - ((max_interval - full_interval) * full_velocity_steps / virtual_full_velocity_steps)); // choose the min speed between feedrate and speed at full steps
- unsigned int steps_acceleration_check = 1;
- accelerating = acceleration_enabled;
- #endif
unsigned long start_move_micros = micros();
- previous_micros_x = start_move_micros*100;
- previous_micros_y = previous_micros_x;
- previous_micros_z = previous_micros_x;
- previous_micros_e = previous_micros_x;
+ for(int i = 0; i < NUM_AXIS; i++) {
+ axis_previous_micros[i] = start_move_micros * 100;
+ }
+
+ #ifdef DISABLE_CHECK_DURING_TRAVEL
+ //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's
+ // consider this a print move and perform heat management during it
+ if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true;
+ //else, if the move is a retract, consider it as a travel move for the sake of this feature
+ else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false;
+ #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL
+ log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move);
+ #endif
+ #endif
+
+ #ifdef DEBUG_MOVE_TIME
+ unsigned long startmove = micros();
+ #endif
//move until no more steps remain
- while(x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) {
- //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
- manage_heater();
- manage_inactivity(2);
+ while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) {
+ #ifdef DISABLE_CHECK_DURING_ACC
+ if(!accelerating && !decelerating) {
+ //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
+ #ifdef DISABLE_CHECK_DURING_TRAVEL
+ if(is_print_move)
+ #endif
+ manage_heater();
+ }
+ #else
+ #ifdef DISABLE_CHECK_DURING_MOVE
+ {} //Do nothing
+ #else
+ //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
+ #ifdef DISABLE_CHECK_DURING_TRAVEL
+ if(is_print_move)
+ #endif
+ manage_heater();
+ #endif
+ #endif
#ifdef RAMP_ACCELERATION
//If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
if (acceleration_enabled && steps_done == 0) {
@@ -1107,128 +1094,40 @@ void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remainin
accelerating = false;
}
#endif
- #ifdef EXP_ACCELERATION
- //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
- if (acceleration_enabled && steps_done < full_velocity_steps && steps_done / full_velocity_steps < 1 && (steps_done % steps_acceleration_check == 0)) {
- if(steps_done == 0) {
- interval = max_interval;
- } else {
- interval = max_interval - ((max_interval - full_interval) * steps_done / virtual_full_velocity_steps);
- }
- } else if (acceleration_enabled && steps_remaining < full_velocity_steps) {
- //Else, if acceleration is enabled on this move and we are in the deceleration segment, calculate the current interval
- if(steps_remaining == 0) {
- interval = max_interval;
- } else {
- interval = max_interval - ((max_interval - full_interval) * steps_remaining / virtual_full_velocity_steps);
- }
- accelerating = true;
- } else if (steps_done - full_velocity_steps >= 1 || !acceleration_enabled){
- //Else, we are just use the full speed interval as current interval
- interval = full_interval;
- accelerating = false;
- }
- #endif
//If there are x or y steps remaining, perform Bresenham algorithm
- if(x_steps_remaining || y_steps_remaining) {
- if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break;
- if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break;
- if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break;
- if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break;
- if(steep_y) {
- timediff = micros() * 100 - previous_micros_y;
- while(timediff >= interval && y_steps_remaining > 0) {
- steps_done++;
- steps_remaining--;
- y_steps_remaining--; timediff -= interval;
- error_x = error_x - delta_x;
- do_y_step();
- if(error_x < 0) {
- do_x_step(); x_steps_remaining--;
- error_x = error_x + delta_y;
+ if(axis_steps_remaining[primary_axis]) {
+ if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break;
+ if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break;
+ if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break;
+ if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break;
+ if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break;
+ if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break;
+ timediff = micros() * 100 - axis_previous_micros[primary_axis];
+ while(timediff >= interval && axis_steps_remaining[primary_axis] > 0) {
+ steps_done++;
+ steps_remaining--;
+ axis_steps_remaining[primary_axis]--; timediff -= interval;
+ do_step_update_micros(primary_axis);
+ for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) {
+ axis_error[i] = axis_error[i] - delta[i];
+ if(axis_error[i] < 0) {
+ do_step(i); axis_steps_remaining[i]--;
+ axis_error[i] = axis_error[i] + delta[primary_axis];
}
- #ifdef RAMP_ACCELERATION
- if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break;
- #endif
- #ifdef STEP_DELAY_RATIO
- if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
}
- } else if (steep_x) {
- timediff=micros() * 100 - previous_micros_x;
- while(timediff >= interval && x_steps_remaining>0) {
- steps_done++;
- steps_remaining--;
- x_steps_remaining--; timediff -= interval;
- error_y = error_y - delta_y;
- do_x_step();
- if(error_y < 0) {
- do_y_step(); y_steps_remaining--;
- error_y = error_y + delta_x;
- }
- #ifdef RAMP_ACCELERATION
- if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break;
- #endif
- #ifdef STEP_DELAY_RATIO
- if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- }
- }
- #ifdef RAMP_ACCELERATION
- if((x_steps_remaining>0 || y_steps_remaining>0) &&
- steps_to_take > 0 &&
- (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating))) continue;
- #endif
-
- //If there are z steps remaining, check if z steps must be taken
- if(z_steps_remaining) {
- if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break;
- if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break;
- timediff = micros() * 100-previous_micros_z;
- while(timediff >= z_interval && z_steps_remaining) {
- do_z_step();
- z_steps_remaining--;
- timediff -= z_interval;
#ifdef STEP_DELAY_RATIO
- if(timediff >= z_interval) delayMicroseconds(long_step_delay_ratio * z_interval / 10000);
+ if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
#endif
#ifdef STEP_DELAY_MICROS
- if(timediff >= z_interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- }
-
- //If there are e steps remaining, check if e steps must be taken
- if(e_steps_remaining){
- if (x_steps_to_take + y_steps_to_take <= 0) timediff = micros()*100 - previous_micros_e;
- unsigned int final_e_steps_remaining = 0;
- if (steep_x && x_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * x_steps_remaining / x_steps_to_take;
- else if (steep_y && y_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * y_steps_remaining / y_steps_to_take;
- //If this move has X or Y steps, let E follow the Bresenham pace
- if (final_e_steps_remaining > 0) while(e_steps_remaining > final_e_steps_remaining) { do_e_step(); e_steps_remaining--;}
- else if (x_steps_to_take + y_steps_to_take > 0) while(e_steps_remaining) { do_e_step(); e_steps_remaining--;}
- //Else, normally check if e steps must be taken
- else while (timediff >= e_interval && e_steps_remaining) {
- do_e_step();
- e_steps_remaining--;
- timediff -= e_interval;
- #ifdef STEP_DELAY_RATIO
- if(timediff >= e_interval) delayMicroseconds(long_step_delay_ratio * e_interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= e_interval) delayMicroseconds(STEP_DELAY_MICROS);
+ if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
#endif
}
}
}
+ #ifdef DEBUG_MOVE_TIME
+ log_ulong("_MOVE_TIME - This move took", micros()-startmove);
+ #endif
if(DISABLE_X) disable_x();
if(DISABLE_Y) disable_y();
@@ -1236,47 +1135,21 @@ void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remainin
if(DISABLE_E) disable_e();
// Update current position partly based on direction, we probably can combine this with the direction code above...
- if (destination_x > current_x) current_x = current_x + x_steps_to_take / x_steps_per_unit;
- else current_x = current_x - x_steps_to_take / x_steps_per_unit;
- if (destination_y > current_y) current_y = current_y + y_steps_to_take / y_steps_per_unit;
- else current_y = current_y - y_steps_to_take / y_steps_per_unit;
- if (destination_z > current_z) current_z = current_z + z_steps_to_take / z_steps_per_unit;
- else current_z = current_z - z_steps_to_take / z_steps_per_unit;
- if (destination_e > current_e) current_e = current_e + e_steps_to_take / e_steps_per_unit;
- else current_e = current_e - e_steps_to_take / e_steps_per_unit;
-}
-
-
-inline void do_x_step()
-{
- digitalWrite(X_STEP_PIN, HIGH);
- previous_micros_x += interval;
- //delayMicroseconds(3);
- digitalWrite(X_STEP_PIN, LOW);
+ for(int i=0; i < NUM_AXIS; i++) {
+ if (destination[i] > current_position[i]) current_position[i] = current_position[i] + move_steps_to_take[i] / axis_steps_per_unit[i];
+ else current_position[i] = current_position[i] - move_steps_to_take[i] / axis_steps_per_unit[i];
+ }
}
-inline void do_y_step()
-{
- digitalWrite(Y_STEP_PIN, HIGH);
- previous_micros_y += interval;
- //delayMicroseconds(3);
- digitalWrite(Y_STEP_PIN, LOW);
+inline void do_step_update_micros(int axis) {
+ digitalWrite(STEP_PIN[axis], HIGH);
+ axis_previous_micros[axis] += interval;
+ digitalWrite(STEP_PIN[axis], LOW);
}
-inline void do_z_step()
-{
- digitalWrite(Z_STEP_PIN, HIGH);
- previous_micros_z += z_interval;
- //delayMicroseconds(3);
- digitalWrite(Z_STEP_PIN, LOW);
-}
-
-inline void do_e_step()
-{
- digitalWrite(E_STEP_PIN, HIGH);
- previous_micros_e += e_interval;
- //delayMicroseconds(3);
- digitalWrite(E_STEP_PIN, LOW);
+inline void do_step(int axis) {
+ digitalWrite(STEP_PIN[axis], HIGH);
+ digitalWrite(STEP_PIN[axis], LOW);
}
inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); }
@@ -1352,6 +1225,10 @@ inline void manage_heater()
previous_millis_heater = millis();
#ifdef HEATER_USES_THERMISTOR
current_raw = analogRead(TEMP_0_PIN);
+ #ifdef DEBUG_HEAT_MGMT
+ log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
+ log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
+ #endif
// When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
// this switches it up so that the reading appears lower than target for the control logic.
current_raw = 1023 - current_raw;
@@ -1414,7 +1291,11 @@ inline void manage_heater()
#ifdef BED_USES_THERMISTOR
- current_bed_raw = analogRead(TEMP_1_PIN);
+ current_bed_raw = analogRead(TEMP_1_PIN);
+ #ifdef DEBUG_HEAT_MGMT
+ log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
+ log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
+ #endif
// If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
// this switches it up so that the reading appears lower than target for the control logic.
@@ -1590,3 +1471,78 @@ inline void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); }
}
+
+#ifdef DEBUG
+void log_message(char* message) {
+ Serial.print("DEBUG"); Serial.println(message);
+}
+
+void log_bool(char* message, bool value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_int(char* message, int value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_long(char* message, long value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_float(char* message, float value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_uint(char* message, unsigned int value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_ulong(char* message, unsigned long value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_int_array(char* message, int value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_long_array(char* message, long value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_float_array(char* message, float value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_uint_array(char* message, unsigned int value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_ulong_array(char* message, unsigned long value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+#endif
diff --git a/Tonokip_Firmware/configuration.h b/Tonokip_Firmware/configuration.h
index 2bd4e6a..2716de2 100644
--- a/Tonokip_Firmware/configuration.h
+++ b/Tonokip_Firmware/configuration.h
@@ -10,7 +10,7 @@
//Min step delay in microseconds. If you are experiencing missing steps, try to raise the delay microseconds, but be aware this
// If you enable this, make sure STEP_DELAY_RATIO is disabled.
-#define STEP_DELAY_MICROS 1
+//#define STEP_DELAY_MICROS 1
//Step delay over interval ratio. If you are still experiencing missing steps, try to uncomment the following line, but be aware this
//If you enable this, make sure STEP_DELAY_MICROS is disabled.
@@ -19,22 +19,12 @@
//Comment this to disable ramp acceleration
#define RAMP_ACCELERATION 1
-//Uncomment this to enable exponential acceleration
-//#define EXP_ACCELERATION 1
-
//Acceleration settings
#ifdef RAMP_ACCELERATION
-float min_units_per_second = 35.0; // the minimum feedrate
-long max_acceleration_units_per_sq_second = 750; // Max acceleration in mm/s^2 for printing moves
-long max_travel_acceleration_units_per_sq_second = 1500; // Max acceleration in mm/s^2 for travel moves
-#endif
-#ifdef EXP_ACCELERATION
-float full_velocity_units = 10; // the units between minimum and G1 move feedrate
-float travel_move_full_velocity_units = 10; // used for travel moves
-float min_units_per_second = 35.0; // the minimum feedrate
-float min_constant_speed_units = 2; // the minimum units of an accelerated move that must be done at constant speed
- // Note that if the move is shorter than this value, acceleration won't be perfomed,
- // but will be done at the minimum between min_units_per_seconds and move feedrate speeds.
+//X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
+float max_start_speed_units_per_second[] = {25.0,25.0,0.2,10.0};
+long max_acceleration_units_per_sq_second[] = {1000,1000,50,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
+long max_travel_acceleration_units_per_sq_second[] = {500,500,50}; // X, Y, Z max acceleration in mm/s^2 for travel moves
#endif
// AD595 THERMOCOUPLE SUPPORT UNTESTED... USE WITH CAUTION!!!!
@@ -51,8 +41,18 @@ float min_constant_speed_units = 2; // the minimum units of an accelerated move
#endif
//How often should the heater check for new temp readings, in milliseconds
-#define HEATER_CHECK_INTERVAL 50
+#define HEATER_CHECK_INTERVAL 500
#define BED_CHECK_INTERVAL 5000
+//Comment the following line to enable heat management during acceleration
+#define DISABLE_CHECK_DURING_ACC
+#ifndef DISABLE_CHECK_DURING_ACC
+ //Uncomment the following line to disable heat management during the move
+ //#define DISABLE_CHECK_DURING_MOVE
+#endif
+//Uncomment the following line to disable heat management during travel moves (and extruder-only moves, eg: retracts), strongly recommended if you are missing steps mid print.
+//Probably this should remain commented if are using PID.
+//It also defines the max milliseconds interval after which a travel move is not considered so for the sake of this feature.
+#define DISABLE_CHECK_DURING_TRAVEL 1000
//Experimental temperature smoothing - only uncomment this if your temp readings are noisy
//#define SMOOTHING 1
@@ -86,19 +86,12 @@ float min_constant_speed_units = 2; // the minimum units of an accelerated move
// units are in millimeters or whatever length unit you prefer: inches,football-fields,parsecs etc
//Calibration variables
-float x_steps_per_unit = 80.376;
-float y_steps_per_unit = 80.376;
-float z_steps_per_unit = 3200/1.25;
-float e_steps_per_unit = 16;
-float max_feedrate = 200000; //mmm, acceleration!
-float max_z_feedrate = 120;
-
+const int NUM_AXIS = 4; // The axis order in all axis related arrays is X, Y, Z, E
+bool axis_relative_modes[] = {false, false, false, false};
+float axis_steps_per_unit[] = {80.376,80.376,3200/1.25,16};
//For SAE Prusa mendeel float z_steps_per_unit = should be 3200/1.411 for 5/16-18 rod and 3200/1.058 for 5/16-24
-//float x_steps_per_unit = 10.047;
-//float y_steps_per_unit = 10.047;
-//float z_steps_per_unit = 833.398;
-//float e_steps_per_unit = 0.706;
-//float max_feedrate = 3000;
+//float axis_steps_per_unit[] = {10.047,10.047,833.398,0.706};
+float max_feedrate[] = {200000, 200000, 240, 500000}; //mmm, acceleration!
//For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
const bool X_ENABLE_ON = 0;
@@ -151,6 +144,15 @@ const int Z_MAX_LENGTH = 100;
#define BAUDRATE 115200
-
+//Uncomment the following line to enable debugging. You can better control debugging below the following line
+//#define DEBUG
+#ifdef DEBUG
+ //#define DEBUG_PREPARE_MOVE //Enable this to debug prepare_move() function
+ //#define DEBUG_BRESENHAM //Enable this to debug the Bresenham algorithm
+ //#define DEBUG_RAMP_ACCELERATION //Enable this to debug all constant acceleration info
+ //#define DEBUG_MOVE_TIME //Enable this to time each move and print the result
+ //#define DEBUG_HEAT_MGMT //Enable this to debug heat management. WARNING, this will cause axes to jitter!
+ //#define DEBUG_DISABLE_CHECK_DURING_TRAVEL //Debug the namesake feature, see above in this file
+#endif
#endif