/*
Reprap firmware based on Sprinter
Optimized for Sanguinololu 1.2 and above / RAMPS
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/*
This firmware is a mashup between Sprinter, grbl and parts from marlin.
(https://github.com/kliment/Sprinter)
Changes by Doppler Michael (midopple)
Planner is from Simen Svale Skogsrud
https://github.com/simen/grbl
Parts of Marlin Firmware from ErikZalm
https://github.com/ErikZalm/Marlin-non-gen6
Sprinter Changelog
- Look forward function --> calculate 16 Steps forward, get from Firmaware Marlin and Grbl
- Stepper control with Timer 1 (Interrupt)
- Extruder heating with PID use a Softpwm (Timer 2) with 500 hz to free Timer1 for Steppercontrol
- command M220 Sxxx --> tune Printing speed online (+/- 50 %)
- G2 / G3 command --> circle function
- Baudrate set to 250 kbaud
- Testet on Sanguinololu Board
- M30 Command can delete files on SD Card
- move string to flash to free RAM vor forward planner
- M203 Temperature monitor for Repetier
Version 1.3.04T
- Implement Plannercode from Marlin V1 big thanks to Erik
- Stepper interrupt with Step loops
- Stepperfrequency 30 Khz
- New Command
* M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, X= maximum xy jerk, Z=maximum Z jerk, E = max E jerk
- Remove unused Variables
- Check Uart Puffer while circle processing (CMD: G2 / G3)
- Fast Xfer Function --> move Text to Flash
- Option to deactivate ARC (G2/G3) function (save flash)
- Removed modulo (%) operator, which uses an expensive divide
Version 1.3.05T
- changed homing function to not conflict with min_software_endstops/max_software_endstops (thanks rGlory)
- Changed check in arc_func
- Corrected distance calculation. (thanks jv4779)
- MAX Feed Rate for Z-Axis reduced to 2 mm/s some Printers had problems with 4 mm/s
Version 1.3.06T
- the microcontroller can store settings in the EEPROM
- M500 - stores paramters in EEPROM
- M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
- M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
- M503 - Print settings
Version 1.3.07T
- Optimize Variable Size (faster Code)
- Remove unused Code from Interrupt --> faster ~ 22 us per step
- Replace abs with fabs --> Faster and smaler
- Add "store_eeprom.cpp" to makefile
Version 1.3.08T
- If a line starts with ';', it is ignored but comment_mode is reset.
A ';' inside a line ignores just the portion following the ';' character.
The beginning of the line is still interpreted.
- Same fix for SD Card, tested and work
Version 1.3.09T
- Move SLOWDOWN Function up
Version 1.3.10T
- Add info to GEN7 Pins
- Update pins.h for gen7, working setup for 20MHz
- calculate feedrate without extrude before planner block is set
- New Board --> GEN7 @ 20 Mhz …
- ENDSTOPS_ONLY_FOR_HOMING Option ignore Endstop always --> fault is cleared
Version 1.3.11T
- fix for broken include in store_eeprom.cpp --> Thanks to kmeehl (issue #145)
- Make fastio & Arduino pin numbering consistent for AT90USB128x. --> Thanks to lincomatic
- Select Speedtable with F_CPU
- Use same Values for Speedtables as Marlin
Version 1.3.12T
- Fixed arc offset.
Version 1.3.13T
- Extrudemultiply with code M221 Sxxx (S100 original Extrude value)
- use Feedratefactor only when Extrude > 0
- M106 / M107 can drive the FAN with PWM + Port check for not using Timer 1
- Added M93 command. Sends current steps for all axis.
- New Option --> FAN_SOFT_PWM, with this option the FAN PWM can use every digital I/O
Version 1.3.14T
- When endstop is hit count the virtual steps, so the print lose no position when endstop is hit
Version 1.3.15T
- M206 - set additional homing offset
- Option for minimum FAN start speed --> #define MINIMUM_FAN_START_SPEED 50 (set it to zero to deactivate)
Version 1.3.16T
- Extra Max Feedrate for Retract (MAX_RETRACT_FEEDRATE)
Version 1.3.17T
- M303 - PID relay autotune possible
- G4 Wait until last move is done
Version 1.3.18T
- Problem with Thermistor 3 table when sensor is broken and temp is -20 °C
Version 1.3.19T
- Set maximum acceleration. If "steps per unit" is Change the acc were not recalculated
- Extra Parameter for Max Extruder Jerk
- New Parameter (max_e_jerk) in EEPROM --> Default settings after update !
Version 1.3.20T
- fix a few typos and correct english usage
- reimplement homing routine as an inline function
- refactor eeprom routines to make it possible to modify the value of a single parameter
- calculate eeprom parameter addresses based on previous param address plus sizeof(type)
- add 0 C point in Thermistortable 7
Version 1.3.21T
- M301 set PID Parameter, and Store to EEPROM
- If no PID is used, deaktivate Variables for PID settings
Version 1.3.22T
- Error in JERK calculation after G92 command is send, make problems
with Z-Lift function in Slic3r
- Add homing values can shown with M206 D
*/
#include
#include
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Sprinter.h"
#include "speed_lookuptable.h"
#include "heater.h"
#ifdef USE_ARC_FUNCTION
#include "arc_func.h"
#endif
#ifdef SDSUPPORT
#include "SdFat.h"
#endif
#ifdef USE_EEPROM_SETTINGS
#include "store_eeprom.h"
#endif
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END SREG = _sreg
#endif //CRITICAL_SECTION_START
void __cxa_pure_virtual(){};
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S or P
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// - - Delete file on sd card
// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M93 - Send axis_steps_per_unit
// M115 - Capabilities string
// M119 - Show Endstopper State
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M201 - Set maximum acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M203 - Set temperture monitor to Sx
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, X=maximum xy jerk, Z=maximum Z jerk
// M206 - set additional homing offset
// M220 - set speed factor override percentage S=factor in percent
// M221 - set extruder multiply factor S100 --> original Extrude Speed
// M301 - Set PID parameters P I and D
// M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C)
// M400 - Finish all moves
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need to reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - Print settings
// Debug feature / Testing the PID for Hotend
// M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperature while printing)
// M602 - Reset Temp jitter from Extruder (min / max val) --> Don't use it while Printing
// M603 - Show Free Ram
#define _VERSION_TEXT "1.3.22T / 20.08.2012"
//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
float axis_steps_per_unit[4] = _AXIS_STEP_PER_UNIT;
float max_feedrate[4] = _MAX_FEEDRATE;
float homing_feedrate[] = _HOMING_FEEDRATE;
bool axis_relative_modes[] = _AXIS_RELATIVE_MODES;
float move_acceleration = _ACCELERATION; // Normal acceleration mm/s^2
float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2
float max_xy_jerk = _MAX_XY_JERK;
float max_z_jerk = _MAX_Z_JERK;
float max_e_jerk = _MAX_E_JERK;
unsigned long min_seg_time = _MIN_SEG_TIME;
#ifdef PIDTEMP
unsigned int PID_Kp = PID_PGAIN, PID_Ki = PID_IGAIN, PID_Kd = PID_DGAIN;
#endif
long max_acceleration_units_per_sq_second[4] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
//float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND;
//long max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves
float mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
float minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
unsigned long plateau_steps;
//unsigned long axis_max_interval[NUM_AXIS];
//unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
//unsigned long max_interval;
//unsigned long steps_per_sqr_second;
//adjustable feed factor for online tuning printer speed
volatile int feedmultiply=100; //100->original / 200 -> Factor 2 / 50 -> Factor 0.5
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
volatile int extrudemultiply=100; //100->1 200->2
//boolean acceleration_enabled = false, accelerating = false;
//unsigned long interval;
float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
float add_homing[3]={0,0,0};
static unsigned short virtual_steps_x = 0;
static unsigned short virtual_steps_y = 0;
static unsigned short virtual_steps_z = 0;
bool home_all_axis = true;
//unsigned ?? ToDo: Check
int feedrate = 1500, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
//unsigned long steps_taken[NUM_AXIS];
//long axis_interval[NUM_AXIS]; // for speed delay
//float time_for_move;
//bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
//long timediff = 0;
bool is_homing = false;
//experimental feedrate calc
//float d = 0;
//float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
#ifdef USE_ARC_FUNCTION
//For arc center point coordinates, sent by commands G2/G3
float offset[3] = {0.0, 0.0, 0.0};
#endif
#ifdef STEP_DELAY_RATIO
long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
#endif
///oscillation reduction
#ifdef RAPID_OSCILLATION_REDUCTION
float cumm_wait_time_in_dir[NUM_AXIS]={0.0,0.0,0.0,0.0};
bool prev_move_direction[NUM_AXIS]={1,1,1,1};
float osc_wait_remainder = 0.0;
#endif
#if (MINIMUM_FAN_START_SPEED > 0)
unsigned char fan_last_speed = 0;
unsigned char fan_org_start_speed = 0;
unsigned long previous_millis_fan_start = 0;
#endif
// comm variables and Commandbuffer
// BUFSIZE is reduced from 8 to 6 to free more RAM for the PLANNER
#define MAX_CMD_SIZE 96
#define BUFSIZE 6 //8
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
//Need 1kb Ram --> only work with Atmega1284
#ifdef SD_FAST_XFER_AKTIV
char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1];
int lastxferchar;
long xferbytes;
#endif
unsigned char bufindr = 0;
unsigned char bufindw = 0;
unsigned char buflen = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
//Send Temperature in °C to Host
int hotendtC = 0, bedtempC = 0;
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
//Temp Monitor for repetier
unsigned char manage_monitor = 255;
//------------------------------------------------
//Init the SD card
//------------------------------------------------
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
uint32_t filesize = 0;
uint32_t sdpos = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
int16_t read_char_int;
void initsd()
{
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
showString(PSTR("SD init fail\r\n"));
}
else if (!volume.init(&card))
showString(PSTR("volume.init failed\r\n"));
else if (!root.openRoot(&volume))
showString(PSTR("openRoot failed\r\n"));
else{
sdactive = true;
print_disk_info();
#ifdef SDINITFILE
file.close();
if(file.open(&root, "init.g", O_READ)){
sdpos = 0;
filesize = file.fileSize();
sdmode = true;
}
#endif
}
#endif
}
#ifdef SD_FAST_XFER_AKTIV
#ifdef PIDTEMP
extern volatile unsigned char g_heater_pwm_val;
#endif
void fast_xfer()
{
char *pstr;
boolean done = false;
//force heater pins low
if(HEATER_0_PIN > -1) WRITE(HEATER_0_PIN,LOW);
if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
#ifdef PIDTEMP
g_heater_pwm_val = 0;
#endif
lastxferchar = 1;
xferbytes = 0;
pstr = strstr(strchr_pointer+4, " ");
if(pstr == NULL)
{
showString(PSTR("invalid command\r\n"));
return;
}
*pstr = '\0';
//check mode (currently only RAW is supported
if(strcmp(strchr_pointer+4, "RAW") != 0)
{
showString(PSTR("Invalid transfer codec\r\n"));
return;
}else{
showString(PSTR("Selected codec: "));
Serial.println(strchr_pointer+4);
}
if (!file.open(&root, pstr+1, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
showString(PSTR("open failed, File: "));
Serial.print(pstr+1);
showString(PSTR("."));
}else{
showString(PSTR("Writing to file: "));
Serial.println(pstr+1);
}
showString(PSTR("ok\r\n"));
//RAW transfer codec
//Host sends \0 then up to SD_FAST_XFER_CHUNK_SIZE then \0
//when host is done, it sends \0\0.
//if a non \0 character is recieved at the beginning, host has failed somehow, kill the transfer.
//read SD_FAST_XFER_CHUNK_SIZE bytes (or until \0 is recieved)
while(!done)
{
while(!Serial.available())
{
}
if(Serial.read() != 0)
{
//host has failed, this isn't a RAW chunk, it's an actual command
file.sync();
file.close();
return;
}
for(int i=0;i(__brkval) == 0)
{
// if no heap use from end of bss section
free_memory = reinterpret_cast(&free_memory) - reinterpret_cast(&__bss_end);
}
else
{
// use from top of stack to heap
free_memory = reinterpret_cast(&free_memory) - reinterpret_cast(__brkval);
}
return free_memory;
}
//------------------------------------------------
//Function the check the Analog OUT pin for not using the Timer1
//------------------------------------------------
void analogWrite_check(uint8_t check_pin, int val)
{
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
//Atmega168/328 can't use OCR1A and OCR1B
//These are pins PB1/PB2 or on Arduino D9/D10
if((check_pin != 9) && (check_pin != 10))
{
analogWrite(check_pin, val);
}
#endif
#if defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__)
//Atmega664P/1284P can't use OCR1A and OCR1B
//These are pins PD4/PD5 or on Arduino D12/D13
if((check_pin != 12) && (check_pin != 13))
{
analogWrite(check_pin, val);
}
#endif
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//Atmega1280/2560 can't use OCR1A, OCR1B and OCR1C
//These are pins PB5,PB6,PB7 or on Arduino D11,D12 and D13
if((check_pin != 11) && (check_pin != 12) && (check_pin != 13))
{
analogWrite(check_pin, val);
}
#endif
}
//------------------------------------------------
//Print a String from Flash to Serial (save RAM)
//------------------------------------------------
void showString (PGM_P s)
{
char c;
while ((c = pgm_read_byte(s++)) != 0)
Serial.print(c);
}
//------------------------------------------------
// Init
//------------------------------------------------
void setup()
{
Serial.begin(BAUDRATE);
showString(PSTR("Sprinter\r\n"));
showString(PSTR(_VERSION_TEXT));
showString(PSTR("\r\n"));
showString(PSTR("start\r\n"));
for(int i = 0; i < BUFSIZE; i++)
{
fromsd[i] = false;
}
//Initialize Dir Pins
#if X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#endif
#if E_DIR_PIN > -1
SET_OUTPUT(E_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1)
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if (Y_ENABLE_PIN > -1)
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif
#if (Z_ENABLE_PIN > -1)
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif
#if (E_ENABLE_PIN > -1)
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
#ifdef CONTROLLERFAN_PIN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#ifdef EXTRUDERFAN_PIN
SET_OUTPUT(EXTRUDERFAN_PIN); //Set pin used for extruder cooling fan
#endif
//endstops and pullups
#ifdef ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
WRITE(X_MIN_PIN,HIGH);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
WRITE(X_MAX_PIN,HIGH);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
WRITE(Y_MIN_PIN,HIGH);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
WRITE(Y_MAX_PIN,HIGH);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
WRITE(Z_MIN_PIN,HIGH);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH);
#endif
#else
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#endif
#endif
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
WRITE(HEATER_0_PIN,LOW);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
WRITE(HEATER_1_PIN,LOW);
#endif
//Initialize Fan Pin
#if (FAN_PIN > -1)
SET_OUTPUT(FAN_PIN);
#endif
//Initialize Alarm Pin
#if (ALARM_PIN > -1)
SET_OUTPUT(ALARM_PIN);
WRITE(ALARM_PIN,LOW);
#endif
//Initialize LED Pin
#if (LED_PIN > -1)
SET_OUTPUT(LED_PIN);
WRITE(LED_PIN,LOW);
#endif
//Initialize Step Pins
#if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
#endif
#if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
#endif
#if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
#endif
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
// for(int i=0; i < NUM_AXIS; i++){
// axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
// axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
// axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
// }
#ifdef HEATER_USES_MAX6675
SET_OUTPUT(SCK_PIN);
WRITE(SCK_PIN,0);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
SET_OUTPUT(MAX6675_SS);
WRITE(MAX6675_SS,1);
#endif
#ifdef SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif
showString(PSTR("SD Start\r\n"));
initsd();
#endif
#if defined(PID_SOFT_PWM) || (defined(FAN_SOFT_PWM) && (FAN_PIN > -1))
showString(PSTR("Soft PWM Init\r\n"));
init_Timer2_softpwm();
#endif
showString(PSTR("Planner Init\r\n"));
plan_init(); // Initialize planner;
showString(PSTR("Stepper Timer init\r\n"));
st_init(); // Initialize stepper
#ifdef USE_EEPROM_SETTINGS
//first Value --> Init with default
//second value --> Print settings to UART
EEPROM_RetrieveSettings(false,false);
#endif
#ifdef PIDTEMP
updatePID();
#endif
//Free Ram
showString(PSTR("Free Ram: "));
Serial.println(FreeRam1());
//Planner Buffer Size
showString(PSTR("Plan Buffer Size:"));
Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
showString(PSTR(" / "));
Serial.println(BLOCK_BUFFER_SIZE);
for(int8_t i=0; i < NUM_AXIS; i++)
{
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
}
//------------------------------------------------
//MAIN LOOP
//------------------------------------------------
void loop()
{
if(buflen < (BUFSIZE-1))
get_command();
if(buflen)
{
#ifdef SDSUPPORT
if(savetosd)
{
if(strstr(cmdbuffer[bufindr],"M29") == NULL)
{
write_command(cmdbuffer[bufindr]);
showString(PSTR("ok\r\n"));
}
else
{
file.sync();
file.close();
savetosd = false;
showString(PSTR("Done saving file.\r\n"));
}
}
else
{
process_commands();
}
#else
process_commands();
#endif
buflen = (buflen-1);
//bufindr = (bufindr + 1)%BUFSIZE;
//Removed modulo (%) operator, which uses an expensive divide and multiplication
bufindr++;
if(bufindr == BUFSIZE) bufindr = 0;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
#if (MINIMUM_FAN_START_SPEED > 0)
manage_fan_start_speed();
#endif
}
//------------------------------------------------
//Check Uart buffer while arc function ist calc a circle
//------------------------------------------------
void check_buffer_while_arc()
{
if(buflen < (BUFSIZE-1))
{
get_command();
}
}
//------------------------------------------------
//READ COMMAND FROM UART
//------------------------------------------------
void get_command()
{
while( Serial.available() > 0 && buflen < BUFSIZE)
{
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || (serial_char == ':' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) { //if empty line
comment_mode = false; // for new command
return;
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
fromsd[bufindw] = false;
if(strstr(cmdbuffer[bufindw], "N") != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) )
{
showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:"));
Serial.println(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strstr(cmdbuffer[bufindw], "*") != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum)
{
showString(PSTR("Error: checksum mismatch, Last Line:"));
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
showString(PSTR("Error: No Checksum with line number, Last Line:"));
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strstr(cmdbuffer[bufindw], "*") != NULL))
{
showString(PSTR("Error: No Line Number with checksum, Last Line:"));
Serial.println(gcode_LastN);
serial_count = 0;
return;
}
}
if((strstr(cmdbuffer[bufindw], "G") != NULL))
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL))))
{
case 0:
case 1:
#ifdef USE_ARC_FUNCTION
case 2: //G2
case 3: //G3 arc func
#endif
#ifdef SDSUPPORT
if(savetosd)
break;
#endif
showString(PSTR("ok\r\n"));
//Serial.println("ok");
break;
default:
break;
}
}
//Removed modulo (%) operator, which uses an expensive divide and multiplication
//bufindw = (bufindw + 1)%BUFSIZE;
bufindw++;
if(bufindw == BUFSIZE) bufindw = 0;
buflen += 1;
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!sdmode || serial_count!=0)
{
return;
}
while( filesize > sdpos && buflen < BUFSIZE)
{
serial_char = file.read();
read_char_int = (int)serial_char;
if(serial_char == '\n' || serial_char == '\r' || (serial_char == ':' && comment_mode == false) || serial_count >= (MAX_CMD_SIZE - 1) || read_char_int == -1)
{
sdpos = file.curPosition();
if(sdpos >= filesize)
{
sdmode = false;
showString(PSTR("Done printing file\r\n"));
}
if(!serial_count) { //if empty line
comment_mode = false; // for new command
return;
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
fromsd[bufindw] = true;
buflen += 1;
//Removed modulo (%) operator, which uses an expensive divide and multiplication
//bufindw = (bufindw + 1)%BUFSIZE;
bufindw++;
if(bufindw == BUFSIZE) bufindw = 0;
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif
}
static bool check_endstops = true;
void enable_endstops(bool check)
{
check_endstops = check;
}
FORCE_INLINE float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
FORCE_INLINE long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
FORCE_INLINE bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found
FORCE_INLINE bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
FORCE_INLINE void homing_routine(char axis)
{
int min_pin, max_pin, home_dir, max_length, home_bounce;
switch(axis){
case X_AXIS:
min_pin = X_MIN_PIN;
max_pin = X_MAX_PIN;
home_dir = X_HOME_DIR;
max_length = X_MAX_LENGTH;
home_bounce = 10;
break;
case Y_AXIS:
min_pin = Y_MIN_PIN;
max_pin = Y_MAX_PIN;
home_dir = Y_HOME_DIR;
max_length = Y_MAX_LENGTH;
home_bounce = 10;
break;
case Z_AXIS:
min_pin = Z_MIN_PIN;
max_pin = Z_MAX_PIN;
home_dir = Z_HOME_DIR;
max_length = Z_MAX_LENGTH;
home_bounce = 4;
break;
default:
//never reached
break;
}
if ((min_pin > -1 && home_dir==-1) || (max_pin > -1 && home_dir==1))
{
current_position[axis] = -1.5 * max_length * home_dir;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 0;
feedrate = homing_feedrate[axis];
prepare_move();
st_synchronize();
current_position[axis] = home_bounce/2 * home_dir;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 0;
prepare_move();
st_synchronize();
current_position[axis] = -home_bounce * home_dir;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = 0;
feedrate = homing_feedrate[axis]/2;
prepare_move();
st_synchronize();
current_position[axis] = (home_dir == -1) ? 0 : max_length;
current_position[axis] += add_homing[axis];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = current_position[axis];
feedrate = 0;
}
}
//------------------------------------------------
// CHECK COMMAND AND CONVERT VALUES
//------------------------------------------------
FORCE_INLINE void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
#if (defined DISABLE_CHECK_DURING_ACC) || (defined DISABLE_CHECK_DURING_MOVE) || (defined DISABLE_CHECK_DURING_TRAVEL)
manage_heater();
#endif
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
//ClearToSend();
return;
//break;
#ifdef USE_ARC_FUNCTION
case 2: // G2 - CW ARC
get_arc_coordinates();
prepare_arc_move(true);
previous_millis_cmd = millis();
//break;
return;
case 3: // G3 - CCW ARC
get_arc_coordinates();
prepare_arc_move(false);
previous_millis_cmd = millis();
//break;
return;
#endif
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
codenum += millis(); // keep track of when we started waiting
st_synchronize(); // wait for all movements to finish
while(millis() < codenum ){
manage_heater();
}
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
previous_millis_cmd = millis();
feedmultiply = 100;
enable_endstops(true);
for(int i=0; i < NUM_AXIS; i++)
{
destination[i] = current_position[i];
}
feedrate = 0;
is_homing = true;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
homing_routine(X_AXIS);
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
homing_routine(Y_AXIS);
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS])))
homing_routine(Z_AXIS);
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
is_homing = false;
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
break;
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
default:
#ifdef SEND_WRONG_CMD_INFO
showString(PSTR("Unknown G-COM:"));
Serial.println(cmdbuffer[bufindr]);
#endif
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef SDSUPPORT
case 20: // M20 - list SD card
showString(PSTR("Begin file list\r\n"));
root.ls();
showString(PSTR("End file list\r\n"));
break;
case 21: // M21 - init SD card
sdmode = false;
initsd();
break;
case 22: //M22 - release SD card
sdmode = false;
sdactive = false;
break;
case 23: //M23 - Select file
if(sdactive)
{
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
if (file.open(&root, strchr_pointer + 4, O_READ))
{
showString(PSTR("File opened:"));
Serial.print(strchr_pointer + 4);
showString(PSTR(" Size:"));
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
showString(PSTR("File selected\r\n"));
}
else
{
showString(PSTR("file.open failed\r\n"));
}
}
break;
case 24: //M24 - Start SD print
if(sdactive)
{
sdmode = true;
}
break;
case 25: //M25 - Pause SD print
if(sdmode)
{
sdmode = false;
}
break;
case 26: //M26 - Set SD index
if(sdactive && code_seen('S'))
{
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
if(sdactive)
{
showString(PSTR("SD printing byte "));
Serial.print(sdpos);
showString(PSTR("/"));
Serial.println(filesize);
}
else
{
showString(PSTR("Not SD printing\r\n"));
}
break;
case 28: //M28 - Start SD write
if(sdactive)
{
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL)
{
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
showString(PSTR("open failed, File: "));
Serial.print(strchr_pointer + 4);
showString(PSTR("."));
}
else
{
savetosd = true;
showString(PSTR("Writing to file: "));
Serial.println(strchr_pointer + 4);
}
}
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//savetosd = false;
break;
#ifndef SD_FAST_XFER_AKTIV
case 30: // M30 filename - Delete file
if(sdactive)
{
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
if(file.remove(&root, strchr_pointer + 4))
{
showString(PSTR("File deleted\r\n"));
}
else
{
showString(PSTR("Deletion failed\r\n"));
}
}
break;
#else
case 30: //M30 - fast SD transfer
fast_xfer();
break;
case 31: //M31 - high speed xfer capabilities
showString(PSTR("RAW:"));
Serial.println(SD_FAST_XFER_CHUNK_SIZE);
break;
#endif
#endif
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
int pin_status = code_value();
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
{
int pin_number = code_value();
for(int i = 0; i < sizeof(sensitive_pins) / sizeof(int); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
//analogWrite(pin_number, pin_status);
}
}
}
break;
case 104: // M104
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
#ifdef WATCHPERIOD
if(target_raw > current_raw)
{
watchmillis = max(1,millis());
watch_raw = current_raw;
}
else
{
watchmillis = 0;
}
#endif
break;
case 140: // M140 set bed temp
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
#endif
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
hotendtC = analog2temp(current_raw);
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
bedtempC = analog2tempBed(current_bed_raw);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595
showString(PSTR("ok T:"));
Serial.print(hotendtC);
#ifdef PIDTEMP
showString(PSTR(" @:"));
Serial.print(heater_duty);
/*
showString(PSTR(",P:"));
Serial.print(pTerm);
showString(PSTR(",I:"));
Serial.print(iTerm);
showString(PSTR(",D:"));
Serial.print(dTerm);
*/
#ifdef AUTOTEMP
showString(PSTR(",AU:"));
Serial.print(autotemp_setpoint);
#endif
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
showString(PSTR(" B:"));
Serial.println(bedtempC);
#else
Serial.println();
#endif
#else
#error No temperature source available
#endif
return;
//break;
case 109: { // M109 - Wait for extruder heater to reach target.
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
#ifdef WATCHPERIOD
if(target_raw>current_raw)
{
watchmillis = max(1,millis());
watch_raw = current_raw;
}
else
{
watchmillis = 0;
}
#endif
codenum = millis();
/* See if we are heating up or cooling down */
bool target_direction = (current_raw < target_raw); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while( (target_direction ? (current_raw < target_raw) : (current_raw > target_raw))
|| (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (current_raw < target_raw) : (current_raw > target_raw) ) {
#endif
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down
{
showString(PSTR("T:"));
Serial.println( analog2temp(current_raw) );
codenum = millis();
}
manage_heater();
#if (MINIMUM_FAN_START_SPEED > 0)
manage_fan_start_speed();
#endif
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ( (residencyStart == -1 && target_direction && current_raw >= target_raw)
|| (residencyStart == -1 && !target_direction && current_raw <= target_raw)
|| (residencyStart > -1 && labs(analog2temp(current_raw) - analog2temp(target_raw)) > TEMP_HYSTERESIS) ) {
residencyStart = millis();
}
#endif
}
}
break;
case 190: // M190 - Wait for bed heater to reach target temperature.
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
#if TEMP_1_PIN > -1
if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
codenum = millis();
while(current_bed_raw < target_bed_raw)
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
hotendtC=analog2temp(current_raw);
showString(PSTR("T:"));
Serial.print( hotendtC );
showString(PSTR(" B:"));
Serial.println( analog2tempBed(current_bed_raw) );
codenum = millis();
}
manage_heater();
#if (MINIMUM_FAN_START_SPEED > 0)
manage_fan_start_speed();
#endif
}
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
if (code_seen('S'))
{
unsigned char l_fan_code_val = constrain(code_value(),0,255);
#if (MINIMUM_FAN_START_SPEED > 0)
if(l_fan_code_val > 0 && fan_last_speed == 0)
{
if(l_fan_code_val < MINIMUM_FAN_START_SPEED)
{
fan_org_start_speed = l_fan_code_val;
l_fan_code_val = MINIMUM_FAN_START_SPEED;
previous_millis_fan_start = millis();
}
fan_last_speed = l_fan_code_val;
}
else
{
fan_last_speed = l_fan_code_val;
fan_org_start_speed = 0;
}
#endif
#if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
g_fan_pwm_val = l_fan_code_val;
#else
WRITE(FAN_PIN, HIGH);
analogWrite_check(FAN_PIN, l_fan_code_val;
#endif
}
else
{
#if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
g_fan_pwm_val = 255;
#else
WRITE(FAN_PIN, HIGH);
analogWrite_check(FAN_PIN, 255 );
#endif
}
break;
case 107: //M107 Fan Off
#if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
g_fan_pwm_val = 0;
#else
analogWrite_check(FAN_PIN, 0);
WRITE(FAN_PIN, LOW);
#endif
break;
#endif
#if (PS_ON_PIN > -1)
case 80: // M81 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND
break;
case 81: // M81 - ATX Power Off
#ifdef CHAIN_OF_COMMAND
st_synchronize(); // wait for all movements to finish
#endif
SET_INPUT(PS_ON_PIN); //Floating
break;
#endif
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 84:
st_synchronize(); // wait for all movements to finish
if(code_seen('S'))
{
stepper_inactive_time = code_value() * 1000;
}
else if(code_seen('T'))
{
enable_x();
enable_y();
enable_z();
enable_e();
}
else
{
disable_x();
disable_y();
disable_z();
disable_e();
}
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
for(int i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
axis_steps_per_unit[i] = code_value();
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
}
// Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
// should also be used in setup() as well
// long temp_max_intervals[NUM_AXIS];
// for(int i=0; i < NUM_AXIS; i++)
// {
// axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
// all steps_per_unit related variables
// }
break;
case 93: // M93 show current axis steps.
showString(PSTR("ok "));
showString(PSTR("X:"));
Serial.print(axis_steps_per_unit[0]);
showString(PSTR("Y:"));
Serial.print(axis_steps_per_unit[1]);
showString(PSTR("Z:"));
Serial.print(axis_steps_per_unit[2]);
showString(PSTR("E:"));
Serial.println(axis_steps_per_unit[3]);
break;
case 115: // M115
showString(PSTR("FIRMWARE_NAME: Sprinter Experimental PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n"));
//Serial.println(uuid);
showString(PSTR(_DEF_CHAR_UUID));
showString(PSTR("\r\n"));
break;
case 114: // M114
showString(PSTR("X:"));
Serial.print(current_position[0]);
showString(PSTR("Y:"));
Serial.print(current_position[1]);
showString(PSTR("Z:"));
Serial.print(current_position[2]);
showString(PSTR("E:"));
Serial.println(current_position[3]);
break;
case 119: // M119
#if (X_MIN_PIN > -1)
showString(PSTR("x_min:"));
Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
showString(PSTR("x_max:"));
Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
showString(PSTR("y_min:"));
Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
showString(PSTR("y_max:"));
Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
showString(PSTR("z_min:"));
Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
showString(PSTR("z_max:"));
Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
#endif
showString(PSTR("\r\n"));
break;
case 201: // M201 Set maximum acceleration in units/s^2 for print moves (M201 X1000 Y1000)
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
max_acceleration_units_per_sq_second[i] = code_value();
axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
}
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#else
case 202: // M202 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
}
break;
#endif
case 203: // M203 Temperature monitor
if(code_seen('S')) manage_monitor = code_value();
if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed
break;
case 204: // M204 acceleration S normal moves T filmanent only moves
if(code_seen('S')) move_acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E= max E jerk
if(code_seen('S')) minimumfeedrate = code_value();
if(code_seen('T')) mintravelfeedrate = code_value();
//if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value() ;
if(code_seen('Z')) max_z_jerk = code_value() ;
if(code_seen('E')) max_e_jerk = code_value() ;
break;
case 206: // M206 additional homing offset
if(code_seen('D'))
{
showString(PSTR("Addhome X:")); Serial.print(add_homing[0]);
showString(PSTR(" Y:")); Serial.print(add_homing[1]);
showString(PSTR(" Z:")); Serial.println(add_homing[2]);
}
for(int8_t cnt_i=0; cnt_i < 3; cnt_i++)
{
if(code_seen(axis_codes[cnt_i])) add_homing[cnt_i] = code_value();
}
break;
case 220: // M220 S- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
feedmultiply = constrain(feedmultiply, 20, 200);
feedmultiplychanged=true;
}
}
break;
case 221: // M221 S- set extrude factor override percentage
{
if(code_seen('S'))
{
extrudemultiply = code_value() ;
extrudemultiply = constrain(extrudemultiply, 40, 200);
}
}
break;
#ifdef PIDTEMP
case 301: // M301
{
if(code_seen('P')) PID_Kp = code_value();
if(code_seen('I')) PID_Ki = code_value();
if(code_seen('D')) PID_Kd = code_value();
updatePID();
}
break;
#endif //PIDTEMP
#ifdef PID_AUTOTUNE
case 303: // M303 PID autotune
{
float help_temp = 150.0;
if (code_seen('S')) help_temp=code_value();
PID_autotune(help_temp);
}
break;
#endif
case 400: // M400 finish all moves
{
st_synchronize();
}
break;
#ifdef USE_EEPROM_SETTINGS
case 500: // Store settings in EEPROM
{
EEPROM_StoreSettings();
}
break;
case 501: // Read settings from EEPROM
{
EEPROM_RetrieveSettings(false,true);
for(int8_t i=0; i < NUM_AXIS; i++)
{
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
}
break;
case 502: // Revert to default settings
{
EEPROM_RetrieveSettings(true,true);
for(int8_t i=0; i < NUM_AXIS; i++)
{
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
}
break;
case 503: // print settings currently in memory
{
EEPROM_printSettings();
}
break;
#endif
#ifdef DEBUG_HEATER_TEMP
case 601: // M601 show Extruder Temp jitter
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
if(current_raw_maxval > 0)
tt_maxval = analog2temp(current_raw_maxval);
if(current_raw_minval < 10000)
tt_minval = analog2temp(current_raw_minval);
#endif
showString(PSTR("Tmin:"));
Serial.print(tt_minval);
showString(PSTR(" / Tmax:"));
Serial.print(tt_maxval);
showString(PSTR(" "));
break;
case 602: // M602 reset Extruder Temp jitter
current_raw_minval = 32000;
current_raw_maxval = -32000;
showString(PSTR("T Minmax Reset "));
break;
#endif
case 603: // M603 Free RAM
showString(PSTR("Free Ram: "));
Serial.println(FreeRam1());
break;
default:
#ifdef SEND_WRONG_CMD_INFO
showString(PSTR("Unknown M-COM:"));
Serial.println(cmdbuffer[bufindr]);
#endif
break;
}
}
else{
showString(PSTR("Unknown command:\r\n"));
Serial.println(cmdbuffer[bufindr]);
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
showString(PSTR("Resend:"));
Serial.println(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif
showString(PSTR("ok\r\n"));
//Serial.println("ok");
}
FORCE_INLINE void get_coordinates()
{
for(int i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F'))
{
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
#ifdef USE_ARC_FUNCTION
void get_arc_coordinates()
{
get_coordinates();
if(code_seen('I')) {
offset[0] = code_value();
}
else {
offset[0] = 0.0;
}
if(code_seen('J')) {
offset[1] = code_value();
}
else {
offset[1] = 0.0;
}
}
#endif
void prepare_move()
{
long help_feedrate = 0;
if(!is_homing){
if (min_software_endstops)
{
if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
}
if (max_software_endstops)
{
if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
}
}
if(destination[E_AXIS] > current_position[E_AXIS])
{
help_feedrate = ((long)feedrate*(long)feedmultiply);
}
else
{
help_feedrate = ((long)feedrate*(long)100);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0);
for(int i=0; i < NUM_AXIS; i++)
{
current_position[i] = destination[i];
}
}
#ifdef USE_ARC_FUNCTION
void prepare_arc_move(char isclockwise)
{
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
long help_feedrate = 0;
if(destination[E_AXIS] > current_position[E_AXIS])
{
help_feedrate = ((long)feedrate*(long)feedmultiply);
}
else
{
help_feedrate = ((long)feedrate*(long)100);
}
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++)
{
current_position[i] = destination[i];
}
}
#endif
FORCE_INLINE void kill()
{
#if TEMP_0_PIN > -1
target_raw=0;
WRITE(HEATER_0_PIN,LOW);
#endif
#if TEMP_1_PIN > -1
target_bed_raw=0;
if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
#endif
disable_x();
disable_y();
disable_z();
disable_e();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
}
FORCE_INLINE void manage_inactivity(byte debug)
{
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time)
{
disable_x();
disable_y();
disable_z();
disable_e();
}
check_axes_activity();
}
#if (MINIMUM_FAN_START_SPEED > 0)
void manage_fan_start_speed(void)
{
if(fan_org_start_speed > 0)
{
if((millis() - previous_millis_fan_start) > MINIMUM_FAN_START_TIME )
{
#if FAN_PIN > -1
#if defined(FAN_SOFT_PWM)
g_fan_pwm_val = fan_org_start_speed;
#else
WRITE(FAN_PIN, HIGH);
analogWrite_check(FAN_PIN, fan_org_start_speed;
#endif
#endif
fan_org_start_speed = 0;
}
}
}
#endif
// Planner with Interrupt for Stepper
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail; // Index of the block to process now
//===========================================================================
//=============================private variables ============================
//===========================================================================
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static int8_t next_block_index(int8_t block_index) {
block_index++;
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
return(block_index);
}
// Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) {
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
block_index--;
return(block_index);
}
// The current position of the tool in absolute steps
static long position[4];
static float previous_speed[4]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment
static unsigned char G92_reset_previous_speed = 0;
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
if (acceleration!=0) {
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
}
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
}
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) {initial_rate=120; }
if(final_rate < 120) {final_rate=120; }
long acceleration = block->acceleration_st;
int32_t accelerate_steps =
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
// Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start breaking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = ceil(
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
accelerate_steps = min(accelerate_steps,block->step_event_count);
plateau_steps = 0;
}
#ifdef ADVANCE
volatile long initial_advance = block->advance*entry_factor*entry_factor;
volatile long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#ifdef ADVANCE
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif //ADVANCE
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity*target_velocity-2*acceleration*distance);
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) {
// return sqrt(
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
//}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { return; }
if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (current->entry_speed != current->max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
current->entry_speed = min( current->max_entry_speed,
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
} else {
current->entry_speed = current->max_entry_speed;
}
current->recalculate_flag = true;
}
} // Skip last block. Already initialized and set for recalculation.
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void planner_reverse_pass() {
uint8_t block_index = block_buffer_head;
//Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START;
unsigned char tail = block_buffer_tail;
CRITICAL_SECTION_END;
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3)
{
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
block_t *block[3] = { NULL, NULL, NULL };
while(block_index != tail) {
block_index = prev_block_index(block_index);
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
}
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!previous) { return; }
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) {
double entry_speed = min( current->entry_speed,
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
current->recalculate_flag = true;
}
}
}
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass.
void planner_forward_pass() {
uint8_t block_index = block_buffer_tail;
block_t *block[3] = { NULL, NULL, NULL };
while(block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = next_block_index(block_index);
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks.
void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
// Recalculate if current block entry or exit junction speed has changed.
if (current->recalculate_flag || next->recalculate_flag) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
next->entry_speed/current->nominal_speed);
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
}
}
block_index = next_block_index( block_index );
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if(next != NULL) {
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
MINIMUM_PLANNER_SPEED/next->nominal_speed);
next->recalculate_flag = false;
}
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
previous_nominal_speed = 0.0;
}
FORCE_INLINE void plan_discard_current_block() {
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
}
}
FORCE_INLINE block_t *plan_get_current_block() {
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
// Gets the current block. Returns NULL if buffer empty
FORCE_INLINE bool blocks_queued()
{
if (block_buffer_head == block_buffer_tail) {
return false;
}
else
return true;
}
void check_axes_activity() {
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
block_t *block;
if(block_buffer_tail != block_buffer_head) {
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) disable_e();
}
float junction_deviation = 0.1;
float max_E_feedrate_calc = MAX_RETRACT_FEEDRATE;
bool retract_feedrate_aktiv = false;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate)
{
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) {
manage_heater();
manage_inactivity(1);
#if (MINIMUM_FAN_START_SPEED > 0)
manage_fan_start_speed();
#endif
}
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target[4];
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->steps_e *= extrudemultiply;
block->steps_e /= 100;
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count <=dropsegments) { return; };
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<steps_e > 0)
retract_feedrate_aktiv = false;
}
else
{
max_E_feedrate_calc = max_feedrate[E_AXIS];
}
}
#ifdef DELAY_ENABLE
if(block->steps_x != 0)
{
enable_x();
delayMicroseconds(DELAY_ENABLE);
}
if(block->steps_y != 0)
{
enable_y();
delayMicroseconds(DELAY_ENABLE);
}
if(block->steps_z != 0)
{
enable_z();
delayMicroseconds(DELAY_ENABLE);
}
if(block->steps_e != 0)
{
enable_e();
delayMicroseconds(DELAY_ENABLE);
}
#else
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e();
#endif
if (block->steps_e == 0) {
if(feed_rate 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif
float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
//delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <= dropsegments && block->steps_y <= dropsegments && block->steps_z <= dropsegments ) {
block->millimeters = fabs(delta_mm[E_AXIS]);
} else {
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
}
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
/*
// segment time im micro seconds
long segment_time = lround(1000000.0/inverse_second);
if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
if (segment_time max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
}
current_speed[E_AXIS] = delta_mm[E_AXIS] * inverse_second;
if(fabs(current_speed[E_AXIS]) > max_E_feedrate_calc)
speed_factor = min(speed_factor, max_E_feedrate_calc / fabs(current_speed[E_AXIS]));
// Correct the speed
if( speed_factor < 1.0)
{
for(unsigned char i=0; i < 4; i++) {
current_speed[i] *= speed_factor;
}
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count/block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
}
else {
block->acceleration_st = ceil(move_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
// Limit acceleration per axis
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
}
block->acceleration = block->acceleration_st / steps_per_mm;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
#if 0 // Use old jerk for now
// Compute path unit vector
double unit_vec[3];
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
// colinear with the circle center. The circular segment joining the two paths represents the
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
// nonlinearities of both the junction angle and junction velocity.
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction,
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
}
}
}
#endif
// Start with a safe speed
float vmax_junction = max_xy_jerk/2;
float vmax_junction_factor = 1.0;
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
vmax_junction = min(vmax_junction, max_z_jerk/2);
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
vmax_junction = min(vmax_junction, max_e_jerk/2);
if(G92_reset_previous_speed == 1)
{
vmax_junction = 0.1;
G92_reset_previous_speed = 0;
}
vmax_junction = min(vmax_junction, block->nominal_speed);
float safe_speed = vmax_junction;
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
// if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed;
// }
if (jerk > max_xy_jerk) {
vmax_junction_factor = (max_xy_jerk/jerk);
}
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
}
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
}
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
}
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
if (block->nominal_speed <= v_allowable) {
block->nominal_length_flag = true;
}
else {
block->nominal_length_flag = false;
}
block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
previous_nominal_speed = block->nominal_speed;
#ifdef ADVANCE
// Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
}
else {
block->advance_rate = advance / (float)acc_dist;
}
}
#endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
safe_speed/block->nominal_speed);
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
#ifdef AUTOTEMP
getHighESpeed();
#endif
st_wake_up();
}
int calc_plannerpuffer_fill(void)
{
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
return(moves_queued);
}
void plan_set_position(float x, float y, float z, float e)
{
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
virtual_steps_x = 0;
virtual_steps_y = 0;
virtual_steps_z = 0;
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
G92_reset_previous_speed = 1;
}
#ifdef AUTOTEMP
void getHighESpeed()
{
static float oldt=0;
if(!autotemp_enabled)
return;
if((target_temp+2) < autotemp_min) //probably temperature set to zero.
return; //do nothing
float high=0.0;
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
if((block_buffer[block_index].steps_x != 0) ||
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) {
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
//se; units steps/sec;
if(se>high)
{
high=se;
}
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
float t=autotemp_min+high*autotemp_factor;
if(tautotemp_max)
t=autotemp_max;
if(oldt>t)
{
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
}
oldt=t;
autotemp_setpoint = (int)t;
}
#endif
// Stepper
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<
//
// The trapezoid is the shape of the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up()
{
// TCNT1 = 0;
if(busy == false)
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate)
{
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = (step_rate >> 1)&0x7fff;
step_loops = 2;
}
else {
step_loops = 1;
}
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)) // higher step rate
{ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else
{ // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) { timer = 100; }//(20kHz this should never happen)
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
FORCE_INLINE void trapezoid_generator_reset()
{
#ifdef ADVANCE
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
// step_rate to timer interval
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
OCR1A_nominal = calc_timer(current_block->nominal_rate);
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
// #ifdef ADVANCE
// e_steps = 0;
// #endif
}
else {
OCR1A=2000; // 1kHz.
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set direction and check limit switches
if ((out_bits & (1< -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOP_INVERT);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
if(!is_homing)
endstop_x_hit=true;
else
step_events_completed = current_block->step_event_count;
}
else
{
endstop_x_hit=false;
}
old_x_min_endstop = x_min_endstop;
#else
endstop_x_hit=false;
#endif
}
}
else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR);
CHECK_ENDSTOPS
{
#if X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOP_INVERT);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
if(!is_homing)
endstop_x_hit=true;
else
step_events_completed = current_block->step_event_count;
}
else
{
endstop_x_hit=false;
}
old_x_max_endstop = x_max_endstop;
#else
endstop_x_hit=false;
#endif
}
}
if ((out_bits & (1< -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
if(!is_homing)
endstop_y_hit=true;
else
step_events_completed = current_block->step_event_count;
}
else
{
endstop_y_hit=false;
}
old_y_min_endstop = y_min_endstop;
#else
endstop_y_hit=false;
#endif
}
}
else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
CHECK_ENDSTOPS
{
#if Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
if(!is_homing)
endstop_y_hit=true;
else
step_events_completed = current_block->step_event_count;
}
else
{
endstop_y_hit=false;
}
old_y_max_endstop = y_max_endstop;
#else
endstop_y_hit=false;
#endif
}
}
if ((out_bits & (1< -1
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
if(!is_homing)
endstop_z_hit=true;
else
step_events_completed = current_block->step_event_count;
}
else
{
endstop_z_hit=false;
}
old_z_min_endstop = z_min_endstop;
#else
endstop_z_hit=false;
#endif
}
}
else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
CHECK_ENDSTOPS
{
#if Z_MAX_PIN > -1
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
if(!is_homing)
endstop_z_hit=true;
else
step_events_completed = current_block->step_event_count;
}
else
{
endstop_z_hit=false;
}
old_z_max_endstop = z_max_endstop;
#else
endstop_z_hit=false;
#endif
}
}
#ifndef ADVANCE
if ((out_bits & (1<steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<steps_x;
if (counter_x > 0) {
if(!endstop_x_hit)
{
if(virtual_steps_x)
virtual_steps_x--;
else
WRITE(X_STEP_PIN, HIGH);
}
else
virtual_steps_x++;
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
if(!endstop_y_hit)
{
if(virtual_steps_y)
virtual_steps_y--;
else
WRITE(Y_STEP_PIN, HIGH);
}
else
virtual_steps_y++;
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
if(!endstop_z_hit)
{
if(virtual_steps_z)
virtual_steps_z--;
else
WRITE(Z_STEP_PIN, HIGH);
}
else
virtual_steps_z++;
counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW);
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW);
}
#endif //!ADVANCE
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
}
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
if(acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
OCR1A = timer;
acceleration_time += timer;
#ifdef ADVANCE
for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate;
}
//if(advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
}
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
OCR1A = timer;
deceleration_time += timer;
#ifdef ADVANCE
for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate;
}
if(advance < final_advance) advance = final_advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif //ADVANCE
}
else {
OCR1A = OCR1A_nominal;
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A;
// Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;i++)
{
if (e_steps != 0)
{
WRITE(E0_STEP_PIN, LOW);
if (e_steps < 0) {
WRITE(E0_DIR_PIN, INVERT_E0_DIR);
e_steps++;
WRITE(E0_STEP_PIN, HIGH);
}
else if (e_steps > 0) {
WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
e_steps--;
WRITE(E0_STEP_PIN, HIGH);
}
}
}
}
#endif // ADVANCE
void st_init()
{
// waveform generation = 0100 = CTC
TCCR1B &= ~(1< 0)
manage_fan_start_speed();
#endif
}
}
#ifdef DEBUG
void log_message(char* message) {
Serial.print("DEBUG"); Serial.println(message);
}
void log_bool(char* message, bool value) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
}
void log_int(char* message, int value) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
}
void log_long(char* message, long value) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
}
void log_float(char* message, float value) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
}
void log_uint(char* message, unsigned int value) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
}
void log_ulong(char* message, unsigned long value) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
}
void log_int_array(char* message, int value[], int array_lenght) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
for(int i=0; i < array_lenght; i++){
Serial.print(value[i]);
if(i != array_lenght-1) Serial.print(", ");
}
Serial.println("}");
}
void log_long_array(char* message, long value[], int array_lenght) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
for(int i=0; i < array_lenght; i++){
Serial.print(value[i]);
if(i != array_lenght-1) Serial.print(", ");
}
Serial.println("}");
}
void log_float_array(char* message, float value[], int array_lenght) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
for(int i=0; i < array_lenght; i++){
Serial.print(value[i]);
if(i != array_lenght-1) Serial.print(", ");
}
Serial.println("}");
}
void log_uint_array(char* message, unsigned int value[], int array_lenght) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
for(int i=0; i < array_lenght; i++){
Serial.print(value[i]);
if(i != array_lenght-1) Serial.print(", ");
}
Serial.println("}");
}
void log_ulong_array(char* message, unsigned long value[], int array_lenght) {
Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
for(int i=0; i < array_lenght; i++){
Serial.print(value[i]);
if(i != array_lenght-1) Serial.print(", ");
}
Serial.println("}");
}
#endif