// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // Licence: GPL #include "configuration.h" #include "pins.h" #include "ThermistorTable.h" // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes //Implemented Codes //------------------- // G0 -> G1 // G1 - Coordinated Movement X Y Z E // G4 - Dwell S or P // G90 - Use Absolute Coordinates // G91 - Use Relative Coordinates // G92 - Set current position to cordinates given //RepRap M Codes // M104 - Set target temp // M105 - Read current temp // M109 - Wait for current temp to reach target temp. //Custom M Codes // M80 - Turn on Power Supply // M81 - Turn off Power Supply // M82 - Set E codes absolute (default) // M83 - Set E codes relative while in Absolute Coordinates (G90) mode // M84 - Disable steppers until next move //Stepper Movement Variables bool direction_x, direction_y, direction_z, direction_e; unsigned long previous_micros=0, previous_micros_x=0, previous_micros_y=0, previous_micros_z=0, previous_micros_e=0, previous_millis_heater; unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take; float destination_x =0.0, destination_y = 0.0, destination_z = 0.0, destination_e = 0.0; float current_x = 0.0, current_y = 0.0, current_z = 0.0, current_e = 0.0; float x_interval, y_interval, z_interval, e_interval; // for speed delay float feedrate = 1500, next_feedrate; float time_for_move; long gcode_N, gcode_LastN; bool relative_mode = false; //Determines Absolute or Relative Coordinates bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. // comm variables #define MAX_CMD_SIZE 256 char cmdbuffer[MAX_CMD_SIZE]; char serial_char; int serial_count = 0; boolean comment_mode = false; char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc //manage heater variables int target_raw = 0; int current_raw; void setup() { //Initialize Step Pins if(X_STEP_PIN > -1) pinMode(X_STEP_PIN,OUTPUT); if(Y_STEP_PIN > -1) pinMode(Y_STEP_PIN,OUTPUT); if(Z_STEP_PIN > -1) pinMode(Z_STEP_PIN,OUTPUT); if(E_STEP_PIN > -1) pinMode(E_STEP_PIN,OUTPUT); //Initialize Dir Pins if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT); if(Y_DIR_PIN > -1) pinMode(Y_DIR_PIN,OUTPUT); if(Z_DIR_PIN > -1) pinMode(Z_DIR_PIN,OUTPUT); if(E_DIR_PIN > -1) pinMode(E_DIR_PIN,OUTPUT); //Steppers default to disabled. if(X_ENABLE_PIN > -1) if(!X_ENABLE_ON) digitalWrite(X_ENABLE_PIN,HIGH); if(Y_ENABLE_PIN > -1) if(!Y_ENABLE_ON) digitalWrite(Y_ENABLE_PIN,HIGH); if(Z_ENABLE_PIN > -1) if(!Z_ENABLE_ON) digitalWrite(Z_ENABLE_PIN,HIGH); if(E_ENABLE_PIN > -1) if(!E_ENABLE_ON) digitalWrite(E_ENABLE_PIN,HIGH); //Initialize Enable Pins if(X_ENABLE_PIN > -1) pinMode(X_ENABLE_PIN,OUTPUT); if(Y_ENABLE_PIN > -1) pinMode(Y_ENABLE_PIN,OUTPUT); if(Z_ENABLE_PIN > -1) pinMode(Z_ENABLE_PIN,OUTPUT); if(E_ENABLE_PIN > -1) pinMode(E_ENABLE_PIN,OUTPUT); if(HEATER_0_PIN > -1) pinMode(HEATER_0_PIN,OUTPUT); Serial.begin(BAUDRATE); Serial.println("start"); } void loop() { get_command(); manage_heater(); } inline void get_command() { if( Serial.available() ) { serial_char = Serial.read(); if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) { if(!serial_count) return; //if empty line cmdbuffer[serial_count] = 0; //terminate string Serial.print("Echo:"); Serial.println(&cmdbuffer[0]); process_commands(); comment_mode = false; //for new command serial_count = 0; //clear buffer //Serial.println("ok"); } else { if(serial_char == ';') comment_mode = true; if(!comment_mode) cmdbuffer[serial_count++] = serial_char; } } } //#define code_num (strtod(&cmdbuffer[strchr_pointer - cmdbuffer + 1], NULL)) //inline void code_search(char code) { strchr_pointer = strchr(cmdbuffer, code); } inline float code_value() { return (strtod(&cmdbuffer[strchr_pointer - cmdbuffer + 1], NULL)); } inline long code_value_long() { return (strtol(&cmdbuffer[strchr_pointer - cmdbuffer + 1], NULL, 10)); } inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer, code_string) != NULL); } //Return True if the string was found inline bool code_seen(char code) { strchr_pointer = strchr(cmdbuffer, code); return (strchr_pointer != NULL); //Return True if a character was found } inline void process_commands() { unsigned long codenum; //throw away variable if(code_seen('N')) { gcode_N = code_value_long(); if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer, "M110") == NULL) ) { //if(gcode_N != gcode_LastN+1 && !code_seen("M110") ) { //Hmm, compile size is different between using this vs the line above even though it should be the same thing. Keeping old method. Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:"); Serial.println(gcode_LastN); FlushSerialRequestResend(); return; } if(code_seen('*')) { byte checksum = 0; byte count=0; while(cmdbuffer[count] != '*') checksum = checksum^cmdbuffer[count++]; if( (int)code_value() != checksum) { Serial.print("Error: checksum mismatch, Last Line:"); Serial.println(gcode_LastN); FlushSerialRequestResend(); return; } //if no errors, continue parsing } else { Serial.print("Error: No Checksum with line number, Last Line:"); Serial.println(gcode_LastN); FlushSerialRequestResend(); return; } gcode_LastN = gcode_N; //if no errors, continue parsing } else // if we don't receive 'N' but still see '*' { if(code_seen('*')) { Serial.print("Error: No Line Number with checksum, Last Line:"); Serial.println(gcode_LastN); return; } } //continues parsing only if we don't receive any 'N' or '*' or no errors if we do. :) if(code_seen('G')) { switch((int)code_value()) { case 0: // G0 -> G1 case 1: // G1 get_coordinates(); // For X Y Z E F x_steps_to_take = abs(destination_x - current_x)*x_steps_per_unit; y_steps_to_take = abs(destination_y - current_y)*y_steps_per_unit; z_steps_to_take = abs(destination_z - current_z)*z_steps_per_unit; e_steps_to_take = abs(destination_e - current_e)*e_steps_per_unit; #define X_TIME_FOR_MOVE ((float)x_steps_to_take / (x_steps_per_unit*feedrate/60000000)) #define Y_TIME_FOR_MOVE ((float)y_steps_to_take / (y_steps_per_unit*feedrate/60000000)) #define Z_TIME_FOR_MOVE ((float)z_steps_to_take / (z_steps_per_unit*feedrate/60000000)) #define E_TIME_FOR_MOVE ((float)e_steps_to_take / (e_steps_per_unit*feedrate/60000000)) time_for_move = max(X_TIME_FOR_MOVE,Y_TIME_FOR_MOVE); time_for_move = max(time_for_move,Z_TIME_FOR_MOVE); //time_for_move = max(time_for_move,E_TIME_FOR_MOVE); //Commented so E axis doesn't trigger max feedrate. if(x_steps_to_take) x_interval = time_for_move/x_steps_to_take; if(y_steps_to_take) y_interval = time_for_move/y_steps_to_take; if(z_steps_to_take) z_interval = time_for_move/z_steps_to_take; if(e_steps_to_take) e_interval = time_for_move/e_steps_to_take; #define DEBUGGING false if(DEBUGGING) { Serial.print("destination_x: "); Serial.println(destination_x); Serial.print("current_x: "); Serial.println(current_x); Serial.print("x_steps_to_take: "); Serial.println(x_steps_to_take); Serial.print("X_TIME_FOR_MVE: "); Serial.println(X_TIME_FOR_MOVE); Serial.print("x_interval: "); Serial.println(x_interval); Serial.println(""); Serial.print("destination_y: "); Serial.println(destination_y); Serial.print("current_y: "); Serial.println(current_y); Serial.print("y_steps_to_take: "); Serial.println(y_steps_to_take); Serial.print("Y_TIME_FOR_MVE: "); Serial.println(Y_TIME_FOR_MOVE); Serial.print("y_interval: "); Serial.println(y_interval); Serial.println(""); Serial.print("destination_z: "); Serial.println(destination_z); Serial.print("current_z: "); Serial.println(current_z); Serial.print("z_steps_to_take: "); Serial.println(z_steps_to_take); Serial.print("Z_TIME_FOR_MVE: "); Serial.println(Z_TIME_FOR_MOVE); Serial.print("z_interval: "); Serial.println(z_interval); Serial.println(""); Serial.print("destination_e: "); Serial.println(destination_e); Serial.print("current_e: "); Serial.println(current_e); Serial.print("e_steps_to_take: "); Serial.println(e_steps_to_take); Serial.print("E_TIME_FOR_MVE: "); Serial.println(E_TIME_FOR_MOVE); Serial.print("e_interval: "); Serial.println(e_interval); Serial.println(""); } linear_move(x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take); // make the move ClearToSend(); return; case 4: // G4 dwell codenum = 0; if(code_seen('P')) codenum = code_value(); // milliseconds to wait if(code_seen('S')) codenum = code_value()*1000; // seconds to wait previous_millis_heater = millis(); // keep track of when we started waiting while((millis() - previous_millis_heater) < codenum ) manage_heater(); //manage heater until time is up break; case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 if(code_seen('X')) current_x = code_value(); if(code_seen('Y')) current_y = code_value(); if(code_seen('Z')) current_z = code_value(); if(code_seen('E')) current_e = code_value(); break; } } if(code_seen('M')) { switch( (int)code_value() ) { case 104: // M104 if (code_seen('S')) target_raw = temp2analog(code_value()); break; case 105: // M105 Serial.print("T:"); Serial.println( analog2temp(analogRead(TEMP_0_PIN)) ); if(code_seen('N')) Serial.println("ok"); // If M105 is sent from generated gcode, then it needs a response. return; //If RepSnapper sends the M105 then DON'T respond "ok". break; case 109: // M109 - Wait for heater to reach target. if (code_seen('S')) target_raw = temp2analog(code_value()); previous_millis_heater = millis(); while(current_raw < target_raw) { if( (millis()-previous_millis_heater) > 1000 ) //Print Temp Reading every 1 second while heating up. { Serial.print("T:"); Serial.println( analog2temp(analogRead(TEMP_0_PIN)) ); previous_millis_heater = millis(); } manage_heater(); } break; case 80: // M81 - ATX Power On if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND break; case 81: // M81 - ATX Power Off if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating break; case 82: relative_mode_e = false; break; case 83: relative_mode_e = true; break; case 84: disable_x(); disable_y(); disable_z(); disable_e(); break; } } ClearToSend(); } inline void FlushSerialRequestResend() { char cmdbuffer[100]="Resend:"; ltoa(gcode_LastN+1, cmdbuffer+7, 10); Serial.flush(); Serial.println(cmdbuffer); ClearToSend(); } inline void ClearToSend() { Serial.println("ok"); } inline void get_coordinates() { if(code_seen('X')) destination_x = (float)code_value() + relative_mode*current_x; else destination_x = current_x; //Are these else lines really needed? if(code_seen('Y')) destination_y = (float)code_value() + relative_mode*current_y; else destination_y = current_y; if(code_seen('Z')) destination_z = (float)code_value() + relative_mode*current_z; else destination_z = current_z; if(code_seen('E')) destination_e = (float)code_value() + (relative_mode_e || relative_mode)*current_e; else destination_e = current_e; if(code_seen('F')) { next_feedrate = code_value(); if(next_feedrate > 0.0) feedrate = next_feedrate; } //Find direction if(destination_x >= current_x) direction_x=1; else direction_x=0; if(destination_y >= current_y) direction_y=1; else direction_y=0; if(destination_z >= current_z) direction_z=1; else direction_z=0; if(destination_e >= current_e) direction_e=1; else direction_e=0; if (min_software_endstops) { if (destination_x < 0) destination_x = 0.0; if (destination_y < 0) destination_y = 0.0; if (destination_z < 0) destination_z = 0.0; } if (max_software_endstops) { if (destination_x > X_MAX_LENGTH) destination_x = X_MAX_LENGTH; if (destination_y > Y_MAX_LENGTH) destination_y = Y_MAX_LENGTH; if (destination_z > Z_MAX_LENGTH) destination_z = Z_MAX_LENGTH; } if(feedrate > max_feedrate) feedrate = max_feedrate; } void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remaining, unsigned long z_steps_remaining, unsigned long e_steps_remaining) // make linear move with preset speeds and destinations, see G0 and G1 { //Determine direction of movement if (destination_x > current_x) digitalWrite(X_DIR_PIN,!INVERT_X_DIR); else digitalWrite(X_DIR_PIN,INVERT_X_DIR); if (destination_y > current_y) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR); else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR); if (destination_z > current_z) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR); else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR); if (destination_e > current_e) digitalWrite(E_DIR_PIN,!INVERT_E_DIR); else digitalWrite(E_DIR_PIN,INVERT_E_DIR); //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration. if(x_steps_remaining) enable_x(); if(y_steps_remaining) enable_y(); if(z_steps_remaining) enable_z(); if(e_steps_remaining) enable_e(); if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0; if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0; if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0; previous_millis_heater = millis(); //while(x_steps_remaining > 0 || y_steps_remaining > 0 || z_steps_remaining > 0 || e_steps_remaining > 0) // move until no more steps remain while(x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) // move until no more steps remain { if(x_steps_remaining) { if ((micros()-previous_micros_x) >= x_interval) { do_x_step(); x_steps_remaining--; } if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0; } if(y_steps_remaining) { if ((micros()-previous_micros_y) >= y_interval) { do_y_step(); y_steps_remaining--; } if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0; } if(z_steps_remaining) { if ((micros()-previous_micros_z) >= z_interval) { do_z_step(); z_steps_remaining--; } if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0; } if(e_steps_remaining) if ((micros()-previous_micros_e) >= e_interval) { do_e_step(); e_steps_remaining--; } if( (millis() - previous_millis_heater) >= 500 ) { manage_heater(); previous_millis_heater = millis(); } } if(DISABLE_X) disable_x(); if(DISABLE_Y) disable_y(); if(DISABLE_Z) disable_z(); if(DISABLE_E) disable_e(); // Update current position partly based on direction, we probably can combine this with the direction code above... if (destination_x > current_x) current_x = current_x + x_steps_to_take/x_steps_per_unit; else current_x = current_x - x_steps_to_take/x_steps_per_unit; if (destination_y > current_y) current_y = current_y + y_steps_to_take/y_steps_per_unit; else current_y = current_y - y_steps_to_take/y_steps_per_unit; if (destination_z > current_z) current_z = current_z + z_steps_to_take/z_steps_per_unit; else current_z = current_z - z_steps_to_take/z_steps_per_unit; if (destination_e > current_e) current_e = current_e + e_steps_to_take/e_steps_per_unit; else current_e = current_e - e_steps_to_take/e_steps_per_unit; } inline void do_x_step() { digitalWrite(X_STEP_PIN, HIGH); previous_micros_x = micros(); //delayMicroseconds(3); digitalWrite(X_STEP_PIN, LOW); } inline void do_y_step() { digitalWrite(Y_STEP_PIN, HIGH); previous_micros_y = micros(); //delayMicroseconds(3); digitalWrite(Y_STEP_PIN, LOW); } inline void do_z_step() { digitalWrite(Z_STEP_PIN, HIGH); previous_micros_z = micros(); //delayMicroseconds(3); digitalWrite(Z_STEP_PIN, LOW); } inline void do_e_step() { digitalWrite(E_STEP_PIN, HIGH); previous_micros_e = micros(); //delayMicroseconds(3); digitalWrite(E_STEP_PIN, LOW); } inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); } inline void disable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN,!Y_ENABLE_ON); } inline void disable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN,!Z_ENABLE_ON); } inline void disable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN,!E_ENABLE_ON); } inline void enable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN, X_ENABLE_ON); } inline void enable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN, Y_ENABLE_ON); } inline void enable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN, Z_ENABLE_ON); } inline void enable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN, E_ENABLE_ON); } inline void manage_heater() { current_raw = analogRead(TEMP_0_PIN); // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, if(USE_THERMISTOR) current_raw = 1023 - current_raw; // this switches it up so that the reading appears lower than target for the control logic. if(current_raw >= target_raw) digitalWrite(HEATER_0_PIN,LOW); else digitalWrite(HEATER_0_PIN,HIGH); } // Takes temperature value as input and returns corresponding analog value from RepRap thermistor temp table. // This is needed because PID in hydra firmware hovers around a given analog value, not a temp value. // This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware. float temp2analog(int celsius) { if(USE_THERMISTOR) { int raw = 0; byte i; for (i=1; i raw) { celsius = temptable[i-1][1] + (raw - temptable[i-1][0]) * (temptable[i][1] - temptable[i-1][1]) / (temptable[i][0] - temptable[i-1][0]); break; } } // Overflow: Set to last value in the table if (i == NUMTEMPS) celsius = temptable[i-1][1]; return celsius; } else { return raw * ((5.0*100.0)/1024.0); } } inline void kill() { if(HEATER_0_PIN > -1) digitalWrite(HEATER_0_PIN,LOW); disable_x; disable_y; disable_z; disable_e; if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); while(1) { Serial.print("Fatal Exception Shutdown, Last Line: "); Serial.println(gcode_LastN); delay(5000); // 5 Second delay } }