diff options
author | Emanuele Caruso <emanuele.caruso@gmail.com> | 2011-05-19 21:52:30 +0200 |
---|---|---|
committer | Emanuele Caruso <emanuele.caruso@gmail.com> | 2011-05-19 21:52:30 +0200 |
commit | 0cf824857bc05deb36ed0b9b3c52c4b2c9ef673c (patch) | |
tree | 09520a39a88ada6a05b2c91c7a825c55e3361289 /Tonokip_Firmware | |
parent | 05274fd21825f03619711200a95302354b51cf29 (diff) |
Z now has its own max acceleration, and it is now fully integrated into Bresenham
Diffstat (limited to 'Tonokip_Firmware')
-rw-r--r-- | Tonokip_Firmware/Tonokip_Firmware.pde | 54 | ||||
-rw-r--r-- | Tonokip_Firmware/configuration.h | 14 |
2 files changed, 31 insertions, 37 deletions
diff --git a/Tonokip_Firmware/Tonokip_Firmware.pde b/Tonokip_Firmware/Tonokip_Firmware.pde index 767473a..8d14217 100644 --- a/Tonokip_Firmware/Tonokip_Firmware.pde +++ b/Tonokip_Firmware/Tonokip_Firmware.pde @@ -66,10 +66,12 @@ unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take unsigned long axis_max_interval[] = {100000000.0 / (max_start_speed_units_per_second[0] * axis_steps_per_unit[0]), 100000000.0 / (max_start_speed_units_per_second[1] * axis_steps_per_unit[1]), 100000000.0 / (max_start_speed_units_per_second[2] * axis_steps_per_unit[2]), - 100000000.0 / (max_start_speed_units_per_second[3] * axis_steps_per_unit[3])}; //TODO: refactor all things like this in a function + 100000000.0 / (max_start_speed_units_per_second[3] * axis_steps_per_unit[3])}; //TODO: refactor all things like this in a function, or move to setup() unsigned long max_interval; - unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], max_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1]}; - unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], max_travel_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1]}; + unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], + max_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2]}; + unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], + max_travel_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_travel_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2]}; unsigned long steps_per_sqr_second, plateau_steps; #endif #ifdef EXP_ACCELERATION @@ -822,10 +824,12 @@ inline void process_commands() case 201: // M201 if(code_seen('X')) axis_steps_per_sqr_second[0] = code_value() * axis_steps_per_unit[0]; if(code_seen('Y')) axis_steps_per_sqr_second[1] = code_value() * axis_steps_per_unit[1]; + if(code_seen('Z')) axis_steps_per_sqr_second[2] = code_value() * axis_steps_per_unit[2]; break; case 202: // M202 if(code_seen('X')) axis_travel_steps_per_sqr_second[0] = code_value() * axis_steps_per_unit[0]; if(code_seen('Y')) axis_travel_steps_per_sqr_second[1] = code_value() * axis_steps_per_unit[1]; + if(code_seen('Z')) axis_travel_steps_per_sqr_second[2] = code_value() * axis_steps_per_unit[2]; break; #endif } @@ -1011,18 +1015,19 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with // but will reduce code size if(axis_steps_remaining[0]) enable_x(); if(axis_steps_remaining[1]) enable_y(); - if(axis_steps_remaining[2]) { enable_z(); do_step(2); axis_steps_remaining[2]--; } + if(axis_steps_remaining[2]) enable_z(); if(axis_steps_remaining[3]) { enable_e(); do_step(3); axis_steps_remaining[3]--; } //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm. unsigned int delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes - boolean steep_y = delta[1] > delta[0];// && delta[1] > delta[3] && delta[1] > delta[2]; - boolean steep_x = delta[0] >= delta[1];// && delta[0] > delta[3] && delta[0] > delta[2]; - //boolean steep_z = delta[2] > delta[0] && delta[2] > delta[1] && delta[2] > delta[3]; + boolean steep_y = delta[1] > delta[0] && delta[1] > delta[2];// && delta[1] > delta[3]; + boolean steep_x = delta[0] >= delta[1] && delta[0] > delta[2];// && delta[0] > delta[3]]; + boolean steep_z = delta[2] >= delta[0] && delta[2] >= delta[1]; // && delta[2] > delta[3]; int axis_error[NUM_AXIS]; unsigned int primary_axis; if(steep_x) primary_axis = 0; - else primary_axis = 1; + else if (steep_y) primary_axis = 1; + else primary_axis = 2; #ifdef RAMP_ACCELERATION long max_speed_steps_per_second; long min_speed_steps_per_second; @@ -1064,7 +1069,7 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with //Serial.print("Max interval :"); Serial.println(max_interval); //TODO: delete this println when finished //Calculate slowest axis plateau time float slowest_axis_plateau_time = 0; - for(int i=0; i < 2 ; i++) { //TODO: change to NUM_AXIS as axes get added to bresenham + for(int i=0; i < 3 ; i++) { //TODO: change to NUM_AXIS as axes get added to bresenham if(axis_steps_remaining[i] > 0) { if(e_steps_to_take > 0 && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]); @@ -1153,6 +1158,7 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with #endif #ifdef EXP_ACCELERATION //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval + // TODO: is this any useful? -> steps_done % steps_acceleration_check == 0 if (acceleration_enabled && steps_done < full_velocity_steps && steps_done / full_velocity_steps < 1 && (steps_done % steps_acceleration_check == 0)) { if(steps_done == 0) { interval = max_interval; @@ -1175,18 +1181,20 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with #endif //If there are x or y steps remaining, perform Bresenham algorithm - if(axis_steps_remaining[0] || axis_steps_remaining[1]) { + if(axis_steps_remaining[0] || axis_steps_remaining[1] || axis_steps_remaining[2]) { if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break; if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break; if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break; if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break; + if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break; + if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break; timediff = micros() * 100 - axis_previous_micros[primary_axis]; while(timediff >= interval && axis_steps_remaining[primary_axis] > 0) { steps_done++; steps_remaining--; axis_steps_remaining[primary_axis]--; timediff -= interval; do_step(primary_axis); - for(int i=0; i < 2; i++) if(i != primary_axis) {//TODO change "2" to NUM_AXIS when other axes gets added to bresenham + for(int i=0; i < 3; i++) if(i != primary_axis) {//TODO change "3" to NUM_AXIS when other axes gets added to bresenham axis_error[i] = axis_error[i] - delta[i]; if(axis_error[i] < 0) { do_step(i); axis_steps_remaining[i]--; @@ -1194,6 +1202,7 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with } } #ifdef RAMP_ACCELERATION + //TODO: may this check be dangerous? -> steps_remaining == plateau_steps if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break; #endif #ifdef STEP_DELAY_RATIO @@ -1210,33 +1219,16 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating))) continue; #endif - //If there are z steps remaining, check if z steps must be taken - if(axis_steps_remaining[2]) { - if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break; - timediff = micros() * 100-axis_previous_micros[2]; - while(timediff >= axis_interval[2] && axis_steps_remaining[2]) { - do_step(2); - axis_steps_remaining[2]--; - timediff -= axis_interval[2]; - #ifdef STEP_DELAY_RATIO - if(timediff >= axis_interval[2]) delayMicroseconds(long_step_delay_ratio * axis_interval[2] / 10000); - #endif - #ifdef STEP_DELAY_MICROS - if(timediff >= axis_interval[2]) delayMicroseconds(STEP_DELAY_MICROS); - #endif - } - } - //If there are e steps remaining, check if e steps must be taken if(axis_steps_remaining[3]){ - if (x_steps_to_take + y_steps_to_take <= 0) timediff = micros()*100 - axis_previous_micros[3]; + if (x_steps_to_take + y_steps_to_take + z_steps_to_take<= 0) timediff = micros()*100 - axis_previous_micros[3]; unsigned int final_e_steps_remaining = 0; if (steep_x && x_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * axis_steps_remaining[0] / x_steps_to_take; else if (steep_y && y_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * axis_steps_remaining[1] / y_steps_to_take; + else if (steep_z && z_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * axis_steps_remaining[2] / z_steps_to_take; //If this move has X or Y steps, let E follow the Bresenham pace if (final_e_steps_remaining > 0) while(axis_steps_remaining[3] > final_e_steps_remaining) { do_step(3); axis_steps_remaining[3]--;} - else if (x_steps_to_take + y_steps_to_take > 0) while(axis_steps_remaining[3]) { do_step(3); axis_steps_remaining[3]--;} + else if (x_steps_to_take + y_steps_to_take + z_steps_to_take > 0) while(axis_steps_remaining[3]) { do_step(3); axis_steps_remaining[3]--;} //Else, normally check if e steps must be taken else while (timediff >= axis_interval[3] && axis_steps_remaining[3]) { do_step(3); diff --git a/Tonokip_Firmware/configuration.h b/Tonokip_Firmware/configuration.h index 81f0e29..f8de2a7 100644 --- a/Tonokip_Firmware/configuration.h +++ b/Tonokip_Firmware/configuration.h @@ -19,15 +19,17 @@ //Comment this to disable ramp acceleration #define RAMP_ACCELERATION 1 -//Uncomment this to enable exponential acceleration +//Uncomment this to enable exponential acceleration. WARNING!! This is not supported in the current version, and will be fixed before +// merging it to the stable branch. +// TODO: fix exp acceleration to correctly perform N bresenham. //#define EXP_ACCELERATION 1 //Acceleration settings #ifdef RAMP_ACCELERATION //X, Y, Z, E maximum start speed for accelerated moves. E default value is good for skeinforge 40+, for older versions raise it a lot. -float max_start_speed_units_per_second[] = {35.0,35.0,1.0,10.0}; -long max_acceleration_units_per_sq_second[] = {750,750,100,10000}; // X, Y (Z and E currently not used) max acceleration in mm/s^2 for printing moves -long max_travel_acceleration_units_per_sq_second[] = {1500,1500,100}; // X, Y (Z currently not used) max acceleration in mm/s^2 for travel moves +float max_start_speed_units_per_second[] = {35.0,35.0,0.2,10.0}; +long max_acceleration_units_per_sq_second[] = {750,750,50,4000}; // X, Y, Z (E currently not used) max acceleration in mm/s^2 for printing moves +long max_travel_acceleration_units_per_sq_second[] = {1500,1500,50}; // X, Y, Z max acceleration in mm/s^2 for travel moves #endif #ifdef EXP_ACCELERATION float full_velocity_units = 10; // the units between minimum and G1 move feedrate @@ -89,8 +91,8 @@ float min_constant_speed_units = 2; // the minimum units of an accelerated move //Calibration variables const int NUM_AXIS = 4; // The axis order in all axis related arrays is X, Y, Z, E float axis_steps_per_unit[] = {80.376,80.376,3200/1.25,16}; -float max_feedrate = 200000; //mmm, acceleration! -float max_z_feedrate = 120; +float max_feedrate = 200000; // mm/min, acceleration! +float max_z_feedrate = 180; // mm/min, acceleration! //float x_steps_per_unit = 10.047; //float y_steps_per_unit = 10.047; |