diff options
Diffstat (limited to 'Tonokip_Firmware')
-rw-r--r-- | Tonokip_Firmware/Tonokip_Firmware.pde | 66 |
1 files changed, 27 insertions, 39 deletions
diff --git a/Tonokip_Firmware/Tonokip_Firmware.pde b/Tonokip_Firmware/Tonokip_Firmware.pde index f281e9e..902c0e0 100644 --- a/Tonokip_Firmware/Tonokip_Firmware.pde +++ b/Tonokip_Firmware/Tonokip_Firmware.pde @@ -63,23 +63,19 @@ unsigned long axis_previous_micros[NUM_AXIS]; unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater; unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take; #ifdef RAMP_ACCELERATION - unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit); - unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit); + unsigned long axis_max_interval[] = {100000000.0 / (min_units_per_second * x_steps_per_unit), 100000000.0 / (min_units_per_second * y_steps_per_unit)}; unsigned long max_interval; - unsigned long x_steps_per_sqr_second = max_acceleration_units_per_sq_second * x_steps_per_unit; - unsigned long y_steps_per_sqr_second = max_acceleration_units_per_sq_second * y_steps_per_unit; - unsigned long x_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * x_steps_per_unit; - unsigned long y_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * y_steps_per_unit; + unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second * x_steps_per_unit, max_acceleration_units_per_sq_second * y_steps_per_unit}; + unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second * x_steps_per_unit, max_travel_acceleration_units_per_sq_second * y_steps_per_unit}; unsigned long steps_per_sqr_second, plateau_steps; #endif #ifdef EXP_ACCELERATION unsigned long long_full_velocity_units = full_velocity_units * 100; unsigned long long_travel_move_full_velocity_units = travel_move_full_velocity_units * 100; - unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit); - unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit); + unsigned long axis_max_interval[] = {100000000.0 / (min_units_per_second * x_steps_per_unit), 100000000.0 / (min_units_per_second * y_steps_per_unit)}; unsigned long max_interval; - unsigned long x_min_constant_speed_steps = min_constant_speed_units * x_steps_per_unit, - y_min_constant_speed_steps = min_constant_speed_units * y_steps_per_unit, min_constant_speed_steps; + unsigned long axis_min_constant_speed_steps[] = {min_constant_speed_units * x_steps_per_unit, min_constant_speed_units * y_steps_per_unit}; + unsigned long min_constant_speed_steps; #endif boolean acceleration_enabled = false, accelerating = false; unsigned long interval; @@ -778,12 +774,12 @@ inline void process_commands() break; #ifdef RAMP_ACCELERATION case 201: // M201 - if(code_seen('X')) x_steps_per_sqr_second = code_value() * x_steps_per_unit; - if(code_seen('Y')) y_steps_per_sqr_second = code_value() * y_steps_per_unit; + if(code_seen('X')) axis_steps_per_sqr_second[0] = code_value() * x_steps_per_unit; + if(code_seen('Y')) axis_steps_per_sqr_second[1] = code_value() * y_steps_per_unit; break; case 202: // M202 - if(code_seen('X')) x_travel_steps_per_sqr_second = code_value() * x_steps_per_unit; - if(code_seen('Y')) y_travel_steps_per_sqr_second = code_value() * y_steps_per_unit; + if(code_seen('X')) axis_travel_steps_per_sqr_second[0] = code_value() * x_steps_per_unit; + if(code_seen('Y')) axis_travel_steps_per_sqr_second[1] = code_value() * y_steps_per_unit; break; #endif } @@ -971,7 +967,7 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with if(axis_steps_remaining[3]) { enable_e(); do_step(3); axis_steps_remaining[3]--; } //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm. - unsigned int delta[NUM_AXIS] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes + unsigned int delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes boolean steep_y = delta[1] > delta[0];// && delta[1] > delta[3] && delta[1] > delta[2]; boolean steep_x = delta[0] >= delta[1];// && delta[0] > delta[3] && delta[0] > delta[2]; //boolean steep_z = delta[2] > delta[0] && delta[2] > delta[1] && delta[2] > delta[3]; @@ -992,40 +988,32 @@ void linear_move(unsigned long axis_steps_remaining[]) // make linear move with for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2; interval = axis_interval[primary_axis]; + #ifdef RAMP_ACCELERATION + max_interval = axis_max_interval[primary_axis]; + if(e_steps_to_take > 0) steps_per_sqr_second = axis_steps_per_sqr_second[primary_axis]; + else steps_per_sqr_second = axis_travel_steps_per_sqr_second[primary_axis]; + max_speed_steps_per_second = 100000000 / interval; + min_speed_steps_per_second = 100000000 / max_interval; + float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second; + plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time); + #endif + //Do some Bresenham calculations depending on which axis will lead it. if(steep_y) { - #ifdef RAMP_ACCELERATION - max_interval = max_y_interval; - if(e_steps_to_take > 0) steps_per_sqr_second = y_steps_per_sqr_second; - else steps_per_sqr_second = y_travel_steps_per_sqr_second; - max_speed_steps_per_second = 100000000 / interval; - min_speed_steps_per_second = 100000000 / max_interval; - float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second; - plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time); - #endif #ifdef EXP_ACCELERATION if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * y_steps_per_unit /100; else virtual_full_velocity_steps = long_travel_move_full_velocity_units * y_steps_per_unit /100; - full_velocity_steps = min(virtual_full_velocity_steps, (delta[1] - y_min_constant_speed_steps) / 2); - max_interval = max_y_interval; - min_constant_speed_steps = y_min_constant_speed_steps; + full_velocity_steps = min(virtual_full_velocity_steps, (delta[1] - axis_min_constant_speed_steps[1]) / 2); + max_interval = axis_max_interval[1]; + min_constant_speed_steps = axis_min_constant_speed_steps[1]; #endif } else if (steep_x) { - #ifdef RAMP_ACCELERATION - max_interval = max_x_interval; - if(e_steps_to_take > 0) steps_per_sqr_second = x_steps_per_sqr_second; - else steps_per_sqr_second = x_travel_steps_per_sqr_second; - max_speed_steps_per_second = 100000000 / interval; - min_speed_steps_per_second = 100000000 / max_interval; - float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second; - plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time); - #endif #ifdef EXP_ACCELERATION if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * x_steps_per_unit /100; else virtual_full_velocity_steps = long_travel_move_full_velocity_units * x_steps_per_unit /100; - full_velocity_steps = min(virtual_full_velocity_steps, (delta[0] - x_min_constant_speed_steps) / 2); - max_interval = max_x_interval; - min_constant_speed_steps = x_min_constant_speed_steps; + full_velocity_steps = min(virtual_full_velocity_steps, (delta[0] - axis_min_constant_speed_steps[0]) / 2); + max_interval = axis_max_interval[0]; + min_constant_speed_steps = axis_min_constant_speed_steps[0]; #endif } unsigned long steps_done = 0; |