1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
/*
Reprap heater funtions based on Sprinter
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/*
This softwarepart for Heatercontrol is based on Sprinter
big thanks to kliment (https://github.com/kliment/Sprinter)
*/
#include <avr/pgmspace.h>
#include "heater.h"
#include "fastio.h"
#include "pins.h"
#include "Sprinter.h"
#ifdef CONTROLLERFAN_PIN
void controllerFan(void);
#endif
// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the
// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25
// degree increments (i.e. 100=25 deg).
int target_raw = 0;
int target_temp = 0;
int current_raw = 0;
int current_raw_maxval = -32000;
int current_raw_minval = 32000;
int tt_maxval;
int tt_minval;
int target_bed_raw = 0;
int current_bed_raw = 0;
unsigned long previous_millis_heater, previous_millis_bed_heater, previous_millis_monitor;
#ifdef PIDTEMP
volatile unsigned char g_heater_pwm_val = 0;
unsigned char PWM_off_time = 0;
unsigned char PWM_out_on = 0;
int temp_iState = 0;
int temp_dState = 0;
int prev_temp = 0;
int pTerm;
int iTerm;
int dTerm;
//int output;
int error;
int heater_duty = 0;
const int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
const int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
#endif
#ifdef AUTOTEMP
float autotemp_max=AUTO_TEMP_MAX;
float autotemp_min=AUTO_TEMP_MIN;
float autotemp_factor=AUTO_TEMP_FACTOR;
int autotemp_setpoint=0;
bool autotemp_enabled=true;
#endif
#ifndef HEATER_CURRENT
#define HEATER_CURRENT 255
#endif
#ifdef SMOOTHING
uint32_t nma = 0;
#endif
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
#endif
#ifdef MINTEMP
int minttemp = temp2analogh(MINTEMP);
#endif
#ifdef MAXTEMP
int maxttemp = temp2analogh(MAXTEMP);
#endif
#define HEAT_INTERVAL 250
#ifdef HEATER_USES_MAX6675
unsigned long max6675_previous_millis = 0;
int max6675_temp = 2000;
int read_max6675()
{
if (millis() - max6675_previous_millis < HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = millis();
max6675_temp = 0;
#ifdef PRR
PRR &= ~(1<<PRSPI);
#elif defined PRR0
PRR0 &= ~(1<<PRSPI);
#endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
delay(1);
// read MSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4)
{
// thermocouple open
max6675_temp = 2000;
}
else
{
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif
#ifdef PID_SOFT_PWM
void init_Timer2_softpwm(void)
{
// This is a simple SOFT PWM with 500 Hz for Extruder Heating
TIFR2 = (1 << TOV2); // clear interrupt flag
TCCR2B = (1 << CS22) | (1 << CS20); // start timer (ck/128 prescalar)
TCCR2A = (1 << WGM21); // CTC mode
OCR2A = 128; // We want to have at least 30Hz or else it gets choppy
TIMSK2 = (1 << OCIE2A); // enable timer2 output compare match interrupt
}
ISR(TIMER2_COMPA_vect)
{
if(g_heater_pwm_val < 2)
{
#if LED_PIN > -1
WRITE(LED_PIN,LOW);
#endif
WRITE(HEATER_0_PIN,LOW);
PWM_out_on = 0;
OCR2A = 128;
}
else if(g_heater_pwm_val > 253)
{
#if LED_PIN > -1
WRITE(LED_PIN,HIGH);
#endif
WRITE(HEATER_0_PIN,HIGH);
PWM_out_on = 1;
OCR2A = 128;
}
else
{
if(PWM_out_on == 1)
{
#if LED_PIN > -1
WRITE(LED_PIN,LOW);
#endif
WRITE(HEATER_0_PIN,LOW);
PWM_out_on = 0;
OCR2A = PWM_off_time;
}
else
{
#if LED_PIN > -1
WRITE(LED_PIN,HIGH);
#endif
WRITE(HEATER_0_PIN,HIGH);
PWM_out_on = 1;
if(g_heater_pwm_val > 253)
{
OCR2A = 253;
PWM_off_time = 2;
}
else if(g_heater_pwm_val < 2)
{
OCR2A = 2;
PWM_off_time = 253;
}
else
{
OCR2A = g_heater_pwm_val;
PWM_off_time = 255 - g_heater_pwm_val;
}
}
}
}
#endif
void manage_heater()
{
//Temperatur Monitor for repetier
if((millis() - previous_millis_monitor) > 250 )
{
previous_millis_monitor = millis();
if(manage_monitor <= 1)
{
showString(PSTR("MTEMP:"));
Serial.print(millis());
if(manage_monitor<1)
{
showString(PSTR(" "));
Serial.print(analog2temp(current_raw));
showString(PSTR(" "));
Serial.print(target_temp);
showString(PSTR(" "));
#ifdef PIDTEMP
Serial.println(heater_duty);
#else
#if (HEATER_0_PIN > -1)
if(READ(HEATER_0_PIN))
Serial.println(255);
else
Serial.println(0);
#else
Serial.println(0);
#endif
#endif
}
#if THERMISTORBED!=0
else
{
showString(PSTR(" "));
Serial.print(analog2tempBed(current_bed_raw));
showString(PSTR(" "));
Serial.print(analog2tempBed(target_bed_raw));
showString(PSTR(" "));
#if (HEATER_1_PIN > -1)
if(READ(HEATER_1_PIN))
Serial.println(255);
else
Serial.println(0);
#else
Serial.println(0);
#endif
}
#endif
}
}
// ENDE Temperatur Monitor for repetier
if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
return;
previous_millis_heater = millis();
#ifdef HEATER_USES_THERMISTOR
current_raw = analogRead(TEMP_0_PIN);
#ifdef DEBUG_HEAT_MGMT
log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
#endif
// When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
// this switches it up so that the reading appears lower than target for the control logic.
current_raw = 1023 - current_raw;
#elif defined HEATER_USES_AD595
current_raw = analogRead(TEMP_0_PIN);
#elif defined HEATER_USES_MAX6675
current_raw = read_max6675();
#endif
//MIN / MAX save to display the jitter of Heaterbarrel
if(current_raw > current_raw_maxval)
current_raw_maxval = current_raw;
if(current_raw < current_raw_minval)
current_raw_minval = current_raw;
#ifdef SMOOTHING
if (!nma) nma = SMOOTHFACTOR * current_raw;
nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
current_raw = nma / SMOOTHFACTOR;
#endif
#ifdef WATCHPERIOD
if(watchmillis && millis() - watchmillis > WATCHPERIOD)
{
if(watch_raw + 1 >= current_raw)
{
target_temp = target_raw = 0;
WRITE(HEATER_0_PIN,LOW);
#ifdef PID_SOFT_PWM
g_heater_pwm_val = 0;
#else
analogWrite(HEATER_0_PIN, 0);
#if LED_PIN>-1
WRITE(LED_PIN,LOW);
#endif
#endif
}
else
{
watchmillis = 0;
}
}
#endif
//If tmp is lower then MINTEMP stop the Heater
//or it os better to deaktivate the uutput PIN or PWM ?
#ifdef MINTEMP
if(current_raw <= minttemp)
target_temp = target_raw = 0;
#endif
#ifdef MAXTEMP
if(current_raw >= maxttemp)
{
target_temp = target_raw = 0;
#if (ALARM_PIN > -1)
WRITE(ALARM_PIN,HIGH);
#endif
}
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595)
#ifdef PIDTEMP
int current_temp = analog2temp(current_raw);
error = target_temp - current_temp;
int delta_temp = current_temp - prev_temp;
prev_temp = current_temp;
pTerm = ((long)PID_PGAIN * error) / 256;
const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT);
heater_duty = H0 + pTerm;
if(error < 30)
{
temp_iState += error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = ((long)PID_IGAIN * temp_iState) / 256;
heater_duty += iTerm;
}
int prev_error = abs(target_temp - prev_temp);
int log3 = 1; // discrete logarithm base 3, plus 1
if(prev_error > 81){ prev_error /= 81; log3 += 4; }
if(prev_error > 9){ prev_error /= 9; log3 += 2; }
if(prev_error > 3){ prev_error /= 3; log3 ++; }
dTerm = ((long)PID_DGAIN * delta_temp) / (256*log3);
heater_duty += dTerm;
heater_duty = constrain(heater_duty, 0, HEATER_CURRENT);
#ifdef PID_SOFT_PWM
if(target_raw != 0)
g_heater_pwm_val = (unsigned char)heater_duty;
else
g_heater_pwm_val = 0;
#else
if(target_raw != 0)
analogWrite(HEATER_0_PIN, heater_duty);
else
analogWrite(HEATER_0_PIN, 0);
#if LED_PIN>-1
if(target_raw != 0)
analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255));
else
analogWrite(LED_PIN, 0);
#endif
#endif
#else
if(current_raw >= target_raw)
{
WRITE(HEATER_0_PIN,LOW);
#if LED_PIN>-1
WRITE(LED_PIN,LOW);
#endif
}
else
{
if(target_raw != 0)
{
WRITE(HEATER_0_PIN,HIGH);
#if LED_PIN > -1
WRITE(LED_PIN,HIGH);
#endif
}
}
#endif
#endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#ifndef TEMP_1_PIN
return;
#endif
#if TEMP_1_PIN == -1
return;
#else
#ifdef BED_USES_THERMISTOR
current_bed_raw = analogRead(TEMP_1_PIN);
#ifdef DEBUG_HEAT_MGMT
log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
#endif
// If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
// this switches it up so that the reading appears lower than target for the control logic.
current_bed_raw = 1023 - current_bed_raw;
#elif defined BED_USES_AD595
current_bed_raw = analogRead(TEMP_1_PIN);
#endif
#ifdef MINTEMP
if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp)
#else
if(current_bed_raw >= target_bed_raw)
#endif
{
WRITE(HEATER_1_PIN,LOW);
}
else
{
WRITE(HEATER_1_PIN,HIGH);
}
#endif
#ifdef CONTROLLERFAN_PIN
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif
}
#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
int temp2analog_thermistor(int celsius, const short table[][2], int numtemps)
{
int raw = 0;
byte i;
for (i=1; i<numtemps; i++)
{
if (table[i][1] < celsius)
{
raw = table[i-1][0] +
(celsius - table[i-1][1]) *
(table[i][0] - table[i-1][0]) /
(table[i][1] - table[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == numtemps) raw = table[i-1][0];
return 1023 - raw;
}
#endif
#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
int temp2analog_ad595(int celsius)
{
return celsius * 1024 / (500);
}
#endif
#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
int temp2analog_max6675(int celsius)
{
return celsius * 4;
}
#endif
#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
int analog2temp_thermistor(int raw,const short table[][2], int numtemps) {
int celsius = 0;
byte i;
raw = 1023 - raw;
for (i=1; i<numtemps; i++)
{
if (table[i][0] > raw)
{
celsius = table[i-1][1] +
(raw - table[i-1][0]) *
(table[i][1] - table[i-1][1]) /
(table[i][0] - table[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == numtemps) celsius = table[i-1][1];
return celsius;
}
#endif
#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
int analog2temp_ad595(int raw)
{
return raw * 500 / 1024;
}
#endif
#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
int analog2temp_max6675(int raw)
{
return raw / 4;
}
#endif
#ifdef CONTROLLERFAN_PIN
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;
void controllerFan()
{
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
{
lastMotorCheck = millis();
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled...
{
lastMotor = millis(); //... set time to NOW so the fan will turn on
}
if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
}
else
{
WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
}
}
}
#endif
|