summaryrefslogtreecommitdiff
path: root/Sprinter/Sprinter.pde
diff options
context:
space:
mode:
Diffstat (limited to 'Sprinter/Sprinter.pde')
-rw-r--r--Sprinter/Sprinter.pde3243
1 files changed, 2299 insertions, 944 deletions
diff --git a/Sprinter/Sprinter.pde b/Sprinter/Sprinter.pde
index c35258a..706910f 100644
--- a/Sprinter/Sprinter.pde
+++ b/Sprinter/Sprinter.pde
@@ -1,15 +1,134 @@
- // Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
-// Licence: GPL
+/*
+ Reprap firmware based on Sprinter
+ Optimize for Sanguinololu 1.2 and above, RAMPS
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+/*
+ This firmware is a mashup between Sprinter,grbl and parts from marlin.
+ (https://github.com/kliment/Sprinter)
+
+ Changes by Doppler Michael (midopple)
+
+ Planner is from Simen Svale Skogsrud
+ https://github.com/simen/grbl
+
+ Parts of Marlin Firmware from ErikZalm
+ https://github.com/ErikZalm/Marlin-non-gen6
+
+ Sprinter Changelog
+ - Look forward function --> calculate 16 Steps forward, get from Firmaware Marlin and Grbl
+ - Stepper control with Timer 1 (Interrupt)
+ - Extruder heating with PID use a Softpwm (Timer 2) with 500 hz to free Timer1 für Steppercontrol
+ - command M220 Sxxx --> tune Printing speed online (+/- 50 %)
+ - G2 / G3 command --> circle funktion
+ - Baudrate set to 250 kbaud
+ - Testet on Sanguinololu Board
+ - M30 Command can delete files on SD Card
+ - move string to flash to free RAM vor forward planner
+ - M203 Temperature monitor for Repetier
+
+ Version 1.3.04T
+ - Implement Plannercode from Marlin V1 big thanks to Erik
+ - Stepper interrupt with Step loops
+ - Stepperfrequenz 30 Khz
+ - New Command
+ * M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+ * M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2
+ * M205 - advanced settings: minimum travel speed S=while printing T=travel only, X= maximum xy jerk, Z=maximum Z jerk
+ - Remove unused Variables
+ - Check Uart Puffer while circle processing (CMD: G2 / G3)
+ - Fast Xfer Function --> move Text to Flash
+ - Option to deaktivate ARC (G2/G3) function (save flash)
+ - Removed modulo (%) operator, which uses an expensive divide
+
+ Version 1.3.05T
+ - changed homing function to not conflict with min_software_endstops/max_software_endstops (thanks rGlory)
+ - Changed check in arc_func
+ - Corrected distance calculation. (thanks jv4779)
+ - MAX Feed Rate for Z-Axis reduced to 2 mm/s some Printers had problems with 4 mm/s
+
+ Version 1.3.06T
+ - the microcontroller can store settings in the EEPROM
+ - M500 - stores paramters in EEPROM
+ - M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+ - M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
+ - M503 - Print settings
+
+ Version 1.3.07T
+ - Optimize Variable Size (faster Code)
+ - Remove unused Code from Interrupt --> faster ~ 22 us per step
+ - Replace abs with fabs --> Faster and smaler
+ - Add "store_eeprom.cpp" to makefile
+
+ Version 1.3.08T
+ - If a line starts with ';', it is ignored but comment_mode is reset.
+ A ';' inside a line ignores just the portion following the ';' character.
+ The beginning of the line is still interpreted.
+
+ - Same fix for SD Card, testet and work
+
+ Version 1.3.09T
+ - Move SLOWDOWN Function up
+
+ Version 1.3.10T
+- Add info to GEN7 Pins
+- Update pins.h for gen7, working setup for 20MHz
+- calculate feedrate without extrude before planner block is set
+- New Board --> GEN7 @ 20 Mhz …
+- ENDSTOPS_ONLY_FOR_HOMING Option ignore Endstop always --> fault is cleared
+
+ Version 1.3.11T
+- fix for broken include in store_eeprom.cpp --> Thanks to kmeehl (issue #145)
+- Make fastio & Arduino pin numbering consistent for AT90USB128x. --> Thanks to lincomatic
+- Select Speedtable with F_CPU
+- Use same Values for Speedtables as Marlin
+-
+
+
+
+*/
+
+#include <avr/pgmspace.h>
+#include <math.h>
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Sprinter.h"
+#include "speed_lookuptable.h"
+#include "heater.h"
+
+#ifdef USE_ARC_FUNCTION
+ #include "arc_func.h"
+#endif
#ifdef SDSUPPORT
-#include "SdFat.h"
+ #include "SdFat.h"
+#endif
+
+#ifdef USE_EEPROM_SETTINGS
+ #include "store_eeprom.h"
#endif
+#ifndef CRITICAL_SECTION_START
+#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
+#define CRITICAL_SECTION_END SREG = _sreg
+#endif //CRITICAL_SECTION_START
+
+void __cxa_pure_virtual(){};
+
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
@@ -17,6 +136,8 @@
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
+// G2 - CW ARC
+// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
@@ -32,7 +153,6 @@
// M114 - Display current position
//Custom M Codes
-// M80 - Turn on Power Supply
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
@@ -43,7 +163,9 @@
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
-// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
+// - <filename> - Delete file on sd card
+// M42 - Set output on free pins, on a non pwm pin (over pin 13 on an arduino mega) use S255 to turn it on and S0 to turn it off. Use P to decide the pin (M42 P23 S255) would turn pin 23 on
+// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
@@ -52,105 +174,142 @@
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
+// M119 - Show Endstopper State
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
+// M201 - Set maximum acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M203 - Set temperture monitor to Sx
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2
+// M205 - advanced settings: minimum travel speed S=while printing T=travel only, X= maximum xy jerk, Z=maximum Z jerk
+// M220 - set speed factor override percentage S:factor in percent
-//Stepper Movement Variables
+// M500 - stores paramters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
+// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
+// M503 - Print settings
+
+// Debug feature / Testing the PID for Hotend
+// M601 - Show Temp jitter from Extruder (min / max value from Hotend Temperatur while printing)
+// M602 - Reset Temp jitter from Extruder (min / max val) --> Dont use it while Printing
+// M603 - Show Free Ram
+
+#define _VERSION_TEXT "1.3.11T / 19.03.2012"
+
+//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
-bool move_direction[NUM_AXIS];
-unsigned long axis_previous_micros[NUM_AXIS];
-unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater;
-unsigned long move_steps_to_take[NUM_AXIS];
-#ifdef RAMP_ACCELERATION
-unsigned long axis_max_interval[NUM_AXIS];
+float axis_steps_per_unit[4] = _AXIS_STEP_PER_UNIT;
+
+float max_feedrate[4] = _MAX_FEEDRATE;
+float homing_feedrate[] = _HOMING_FEEDRATE;
+bool axis_relative_modes[] = _AXIS_RELATIVE_MODES;
+
+float move_acceleration = _ACCELERATION; // Normal acceleration mm/s^2
+float retract_acceleration = _RETRACT_ACCELERATION; // Normal acceleration mm/s^2
+float max_xy_jerk = _MAX_XY_JERK;
+float max_z_jerk = _MAX_Z_JERK;
+
+long max_acceleration_units_per_sq_second[4] = _MAX_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
+
+//float max_start_speed_units_per_second[] = _MAX_START_SPEED_UNITS_PER_SECOND;
+//long max_travel_acceleration_units_per_sq_second[] = _MAX_TRAVEL_ACCELERATION_UNITS_PER_SQ_SECOND; // X, Y, Z max acceleration in mm/s^2 for travel moves
+
+float mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
+float minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
+
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
-unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
-unsigned long max_interval;
-unsigned long steps_per_sqr_second, plateau_steps;
-#endif
-boolean acceleration_enabled = false, accelerating = false;
-unsigned long interval;
+unsigned long plateau_steps;
+
+//unsigned long axis_max_interval[NUM_AXIS];
+//unsigned long axis_travel_steps_per_sqr_second[NUM_AXIS];
+//unsigned long max_interval;
+//unsigned long steps_per_sqr_second;
+
+
+//adjustable feed faktor for online tuning printerspeed
+volatile int feedmultiply=100; //100->original / 200-> Faktor 2 / 50 -> Faktor 0.5
+int saved_feedmultiply;
+volatile bool feedmultiplychanged=false;
+
+//boolean acceleration_enabled = false, accelerating = false;
+//unsigned long interval;
float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
-unsigned long steps_taken[NUM_AXIS];
-long axis_interval[NUM_AXIS]; // for speed delay
+
+
bool home_all_axis = true;
+//unsigned ?? ToDo: Check
int feedrate = 1500, next_feedrate, saved_feedrate;
-float time_for_move;
+
long gcode_N, gcode_LastN;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
-bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
-long timediff = 0;
+
+//unsigned long steps_taken[NUM_AXIS];
+//long axis_interval[NUM_AXIS]; // for speed delay
+//float time_for_move;
+//bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
+//long timediff = 0;
+
//experimental feedrate calc
-float d = 0;
-float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
+//float d = 0;
+//float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
+
+
+#ifdef USE_ARC_FUNCTION
+//For arc centerpont, send bei Command G2/G3
+float offset[3] = {0.0, 0.0, 0.0};
+#endif
+
#ifdef STEP_DELAY_RATIO
long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
#endif
+///oscillation reduction
+#ifdef RAPID_OSCILLATION_REDUCTION
+ float cumm_wait_time_in_dir[NUM_AXIS]={0.0,0.0,0.0,0.0};
+ bool prev_move_direction[NUM_AXIS]={1,1,1,1};
+ float osc_wait_remainder = 0.0;
+#endif
-// comm variables
+// comm variables and Commandbuffer
+// BUFSIZE is reduced from 8 to 6 to free more RAM for the PLANNER
#define MAX_CMD_SIZE 96
-#define BUFSIZE 8
+#define BUFSIZE 6 //8
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
-int bufindr = 0;
-int bufindw = 0;
-int buflen = 0;
-int i = 0;
+
+//Need 1kb Ram --> only work with Atmega1284
+#ifdef SD_FAST_XFER_AKTIV
+ char fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE + 1];
+ int lastxferchar;
+ long xferbytes;
+#endif
+
+unsigned char bufindr = 0;
+unsigned char bufindw = 0;
+unsigned char buflen = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the
-// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25
-// degree increments (i.e. 100=25 deg).
-
-int target_raw = 0;
-int target_temp = 0;
-int current_raw = 0;
-int target_bed_raw = 0;
-int current_bed_raw = 0;
-int tt = 0, bt = 0;
-#ifdef PIDTEMP
- int temp_iState = 0;
- int prev_temp = 0;
- int pTerm;
- int iTerm;
- int dTerm;
- //int output;
- int error;
- int heater_duty = 0;
- const int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
- const int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
-#endif
-#ifndef HEATER_CURRENT
- #define HEATER_CURRENT 255
-#endif
-#ifdef SMOOTHING
- uint32_t nma = 0;
-#endif
-#ifdef WATCHPERIOD
- int watch_raw = -1000;
- unsigned long watchmillis = 0;
-#endif
-#ifdef MINTEMP
- int minttemp = temp2analogh(MINTEMP);
-#endif
-#ifdef MAXTEMP
-int maxttemp = temp2analogh(MAXTEMP);
-#endif
-
+//Send Temperature in °C to Host
+int hotendtC = 0, bedtempC = 0;
+
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
+//Temp Montor for repetier
+unsigned char manage_monitor = 255;
+
+
+//------------------------------------------------
+//Init the SD card
+//------------------------------------------------
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
@@ -161,23 +320,27 @@ unsigned long stepper_inactive_time = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
- int16_t n;
+ int16_t read_char_int;
- void initsd(){
+ void initsd()
+ {
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
+
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
- Serial.println("SD init fail");
+ showString(PSTR("SD init fail\r\n"));
}
else if (!volume.init(&card))
- Serial.println("volume.init failed");
+ showString(PSTR("volume.init failed\r\n"));
else if (!root.openRoot(&volume))
- Serial.println("openRoot failed");
+ showString(PSTR("openRoot failed\r\n"));
else{
sdactive = true;
+ print_disk_info();
+
#ifdef SDINITFILE
file.close();
if(file.open(&root, "init.g", O_READ)){
@@ -187,38 +350,237 @@ unsigned long stepper_inactive_time = 0;
}
#endif
}
+
+ #endif
+ }
+
+ #ifdef SD_FAST_XFER_AKTIV
+
+ #ifdef PIDTEMP
+ extern int g_heater_pwm_val;
#endif
+
+ void fast_xfer()
+ {
+ char *pstr;
+ boolean done = false;
+
+ //force heater pins low
+ if(HEATER_0_PIN > -1) WRITE(HEATER_0_PIN,LOW);
+ if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
+
+ g_heater_pwm_val = 0;
+
+ lastxferchar = 1;
+ xferbytes = 0;
+
+ pstr = strstr(strchr_pointer+4, " ");
+
+ if(pstr == NULL)
+ {
+ showString(PSTR("invalid command\r\n"));
+ return;
+ }
+
+ *pstr = '\0';
+
+ //check mode (currently only RAW is supported
+ if(strcmp(strchr_pointer+4, "RAW") != 0)
+ {
+ showString(PSTR("Invalid transfer codec\r\n"));
+ return;
+ }else{
+ showString(PSTR("Selected codec: "));
+ Serial.println(strchr_pointer+4);
+ }
+
+ if (!file.open(&root, pstr+1, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+ {
+ showString(PSTR("open failed, File: "));
+ Serial.print(pstr+1);
+ showString(PSTR("."));
+ }else{
+ showString(PSTR("Writing to file: "));
+ Serial.println(pstr+1);
+ }
+
+ showString(PSTR("ok\r\n"));
+
+ //RAW transfer codec
+ //Host sends \0 then up to SD_FAST_XFER_CHUNK_SIZE then \0
+ //when host is done, it sends \0\0.
+ //if a non \0 character is recieved at the beginning, host has failed somehow, kill the transfer.
+
+ //read SD_FAST_XFER_CHUNK_SIZE bytes (or until \0 is recieved)
+ while(!done)
+ {
+ while(!Serial.available())
+ {
+ }
+ if(Serial.read() != 0)
+ {
+ //host has failed, this isn't a RAW chunk, it's an actual command
+ file.sync();
+ file.close();
+ return;
+ }
+
+ for(int i=0;i<SD_FAST_XFER_CHUNK_SIZE+1;i++)
+ {
+ while(!Serial.available())
+ {
+ }
+ lastxferchar = Serial.read();
+ //buffer the data...
+ fastxferbuffer[i] = lastxferchar;
+
+ xferbytes++;
+
+ if(lastxferchar == 0)
+ break;
+ }
+
+ if(fastxferbuffer[0] != 0)
+ {
+ fastxferbuffer[SD_FAST_XFER_CHUNK_SIZE] = 0;
+ file.write(fastxferbuffer);
+ showString(PSTR("ok\r\n"));
+ }else{
+ showString(PSTR("Wrote "));
+ Serial.print(xferbytes);
+ showString(PSTR(" bytes.\r\n"));
+ done = true;
+ }
+ }
+
+ file.sync();
+ file.close();
}
+ #endif
+
+
+ void print_disk_info(void)
+ {
+
+ // print the type of card
+ showString(PSTR("\nCard type: "));
+ switch(card.type())
+ {
+ case SD_CARD_TYPE_SD1:
+ showString(PSTR("SD1\r\n"));
+ break;
+ case SD_CARD_TYPE_SD2:
+ showString(PSTR("SD2\r\n"));
+ break;
+ case SD_CARD_TYPE_SDHC:
+ showString(PSTR("SDHC\r\n"));
+ break;
+ default:
+ showString(PSTR("Unknown\r\n"));
+ }
- inline void write_command(char *buf){
+ //uint64_t freeSpace = volume.clusterCount()*volume.blocksPerCluster()*512;
+ //uint64_t occupiedSpace = (card.cardSize()*512) - freeSpace;
+ // print the type and size of the first FAT-type volume
+ uint32_t volumesize;
+ showString(PSTR("\nVolume type is FAT"));
+ Serial.println(volume.fatType(), DEC);
+
+ volumesize = volume.blocksPerCluster(); // clusters are collections of blocks
+ volumesize *= volume.clusterCount(); // we'll have a lot of clusters
+ volumesize *= 512; // SD card blocks are always 512 bytes
+ volumesize /= 1024; //kbytes
+ volumesize /= 1024; //Mbytes
+ showString(PSTR("Volume size (Mbytes): "));
+ Serial.println(volumesize);
+
+ // list all files in the card with date and size
+ //root.ls(LS_R | LS_DATE | LS_SIZE);
+ }
+
+
+
+
+
+ FORCE_INLINE void write_command(char *buf)
+ {
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
- if((npos = strchr(buf, 'N')) != NULL){
+
+ if((npos = strchr(buf, 'N')) != NULL)
+ {
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
+
end[1] = '\r';
end[2] = '\n';
end[3] = '\0';
+
//Serial.println(begin);
file.write(begin);
- if (file.writeError){
- Serial.println("error writing to file");
+
+ if (file.writeError)
+ {
+ showString(PSTR("error writing to file\r\n"));
}
}
+
#endif
+int FreeRam1(void)
+{
+ extern int __bss_end;
+ extern int* __brkval;
+ int free_memory;
+
+ if (reinterpret_cast<int>(__brkval) == 0)
+ {
+ // if no heap use from end of bss section
+ free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(&__bss_end);
+ }
+ else
+ {
+ // use from top of stack to heap
+ free_memory = reinterpret_cast<int>(&free_memory) - reinterpret_cast<int>(__brkval);
+ }
+
+ return free_memory;
+}
+
+//------------------------------------------------
+//Print a String from Flash to Serial (save RAM)
+//------------------------------------------------
+void showString (PGM_P s)
+{
+ char c;
+
+ while ((c = pgm_read_byte(s++)) != 0)
+ Serial.print(c);
+}
+
+
+//------------------------------------------------
+// Init
+//------------------------------------------------
void setup()
{
+
Serial.begin(BAUDRATE);
- Serial.println("start");
- for(int i = 0; i < BUFSIZE; i++){
+ showString(PSTR("Sprinter\r\n"));
+ showString(PSTR(_VERSION_TEXT));
+ showString(PSTR("\r\n"));
+ showString(PSTR("start\r\n"));
+
+ for(int i = 0; i < BUFSIZE; i++)
+ {
fromsd[i] = false;
}
+
//Initialize Dir Pins
@@ -253,7 +615,7 @@ void setup()
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
-
+
#ifdef CONTROLLERFAN_PIN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
@@ -329,7 +691,7 @@ void setup()
#if (LED_PIN > -1)
SET_OUTPUT(LED_PIN);
WRITE(LED_PIN,LOW);
- #endif
+ #endif
//Initialize Step Pins
#if (X_STEP_PIN > -1)
@@ -344,9 +706,17 @@ void setup()
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
- #ifdef RAMP_ACCELERATION
- setup_acceleration();
- #endif
+
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+ }
+
+// for(int i=0; i < NUM_AXIS; i++){
+// axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
+// axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+// axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+// }
#ifdef HEATER_USES_MAX6675
SET_OUTPUT(SCK_PIN);
@@ -369,48 +739,107 @@ void setup()
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif
+
+ showString(PSTR("SD Start\r\n"));
initsd();
#endif
+ #ifdef PID_SOFT_PWM
+ showString(PSTR("Soft PWM Init\r\n"));
+ init_Timer2_softpwm();
+ #endif
+
+ showString(PSTR("Planner Init\r\n"));
+ plan_init(); // Initialize planner;
+
+ showString(PSTR("Stepper Timer init\r\n"));
+ st_init(); // Initialize stepper
+
+ #ifdef USE_EEPROM_SETTINGS
+ //first Value --> Init with default
+ //second value --> Print settings to UART
+ EEPROM_RetrieveSettings(false,false);
+ #endif
+
+ //Free Ram
+ showString(PSTR("Free Ram: "));
+ Serial.println(FreeRam1());
+
+ //Planner Buffer Size
+ showString(PSTR("Plan Buffer Size:"));
+ Serial.print((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
+ showString(PSTR(" / "));
+ Serial.println(BLOCK_BUFFER_SIZE);
}
+
+//------------------------------------------------
+//MAIN LOOP
+//------------------------------------------------
void loop()
{
- if(buflen<3)
- get_command();
+ if(buflen < (BUFSIZE-1))
+ get_command();
- if(buflen){
+ if(buflen)
+ {
#ifdef SDSUPPORT
- if(savetosd){
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){
+ if(savetosd)
+ {
+ if(strstr(cmdbuffer[bufindr],"M29") == NULL)
+ {
write_command(cmdbuffer[bufindr]);
- Serial.println("ok");
- }else{
+ showString(PSTR("ok\r\n"));
+ }
+ else
+ {
file.sync();
file.close();
savetosd = false;
- Serial.println("Done saving file.");
+ showString(PSTR("Done saving file.\r\n"));
}
- }else{
+ }
+ else
+ {
process_commands();
}
#else
process_commands();
#endif
+
buflen = (buflen-1);
- bufindr = (bufindr + 1)%BUFSIZE;
- }
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
+ //bufindr = (bufindr + 1)%BUFSIZE;
+ //Removed modulo (%) operator, which uses an expensive divide and multiplication
+ bufindr++;
+ if(bufindr == BUFSIZE) bufindr = 0;
}
+
+ //check heater every n milliseconds
+ manage_heater();
+ manage_inactivity(1);
+}
+
+//------------------------------------------------
+//Check Uart buffer while arc function ist calc a circle
+//------------------------------------------------
+void check_buffer_while_arc()
+{
+ if(buflen < (BUFSIZE-1))
+ {
+ get_command();
+ }
+}
-inline void get_command()
+//------------------------------------------------
+//READ COMMAND FROM UART
+//------------------------------------------------
+void get_command()
{
- while( Serial.available() > 0 && buflen < BUFSIZE) {
+ while( Serial.available() > 0 && buflen < BUFSIZE)
+ {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
@@ -419,77 +848,91 @@ inline void get_command()
return;
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
+
+ fromsd[bufindw] = false;
+ if(strstr(cmdbuffer[bufindw], "N") != NULL)
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
+ gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
+ if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) )
+ {
+ showString(PSTR("Serial Error: Line Number is not Last Line Number+1, Last Line:"));
+ Serial.println(gcode_LastN);
+ //Serial.println(gcode_N);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
- Serial.print("Error: checksum mismatch, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- Serial.print("Error: No Checksum with line number, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
+ if(strstr(cmdbuffer[bufindw], "*") != NULL)
+ {
+ byte checksum = 0;
+ byte count = 0;
+ while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
+ strchr_pointer = strchr(cmdbuffer[bufindw], '*');
+
+ if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum)
+ {
+ showString(PSTR("Error: checksum mismatch, Last Line:"));
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+ //if no errors, continue parsing
+ }
+ else
+ {
+ showString(PSTR("Error: No Checksum with line number, Last Line:"));
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- Serial.print("Error: No Line Number with checksum, Last Line:");
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
- case 0:
- case 1:
+ gcode_LastN = gcode_N;
+ //if no errors, continue parsing
+ }
+ else // if we don't receive 'N' but still see '*'
+ {
+ if((strstr(cmdbuffer[bufindw], "*") != NULL))
+ {
+ showString(PSTR("Error: No Line Number with checksum, Last Line:"));
+ Serial.println(gcode_LastN);
+ serial_count = 0;
+ return;
+ }
+ }
+
+ if((strstr(cmdbuffer[bufindw], "G") != NULL))
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
+ switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL))))
+ {
+ case 0:
+ case 1:
+ #ifdef USE_ARC_FUNCTION
+ case 2: //G2
+ case 3: //G3 arc func
+ #endif
#ifdef SDSUPPORT
if(savetosd)
break;
#endif
- Serial.println("ok");
- break;
- default:
- break;
- }
-
- }
- bufindw = (bufindw + 1)%BUFSIZE;
+ showString(PSTR("ok\r\n"));
+ //Serial.println("ok");
+ break;
+
+ default:
+ break;
+ }
+ }
+ //Removed modulo (%) operator, which uses an expensive divide and multiplication
+ //bufindw = (bufindw + 1)%BUFSIZE;
+ bufindw++;
+ if(bufindw == BUFSIZE) bufindw = 0;
buflen += 1;
-
+
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
@@ -500,51 +943,66 @@ inline void get_command()
}
}
#ifdef SDSUPPORT
-if(!sdmode || serial_count!=0){
+ if(!sdmode || serial_count!=0)
+ {
return;
-}
- while( filesize > sdpos && buflen < BUFSIZE) {
- n = file.read();
- serial_char = (char)n;
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
+ }
+ while( filesize > sdpos && buflen < BUFSIZE)
+ {
+ serial_char = file.read();
+ read_char_int = (int)serial_char;
+
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || read_char_int == -1)
{
sdpos = file.curPosition();
- if(sdpos >= filesize){
+ if(sdpos >= filesize)
+ {
sdmode = false;
- Serial.println("Done printing file");
+ showString(PSTR("Done printing file\r\n"));
}
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = true;
- buflen += 1;
- bufindw = (bufindw + 1)%BUFSIZE;
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
+
+ if(!serial_count) { //if empty line
+ comment_mode = false; // for new command
+ return;
+ }
+
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+
+ fromsd[bufindw] = true;
+ buflen += 1;
+ //Removed modulo (%) operator, which uses an expensive divide and multiplication
+ //bufindw = (bufindw + 1)%BUFSIZE;
+ bufindw++;
+ if(bufindw == BUFSIZE) bufindw = 0;
+
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
-}
+ }
#endif
}
-inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
-inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
-inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found
+FORCE_INLINE float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
+FORCE_INLINE long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
+FORCE_INLINE bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found
-inline bool code_seen(char code)
+FORCE_INLINE bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
-inline void process_commands()
+//------------------------------------------------
+// CHECK COMMAND AND CONVERT VALUES
+//------------------------------------------------
+FORCE_INLINE void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
@@ -564,6 +1022,20 @@ inline void process_commands()
//ClearToSend();
return;
//break;
+ #ifdef USE_ARC_FUNCTION
+ case 2: // G2 - CW ARC
+ get_arc_coordinates();
+ prepare_arc_move(true);
+ previous_millis_cmd = millis();
+ //break;
+ return;
+ case 3: // G3 - CCW ARC
+ get_arc_coordinates();
+ prepare_arc_move(false);
+ previous_millis_cmd = millis();
+ //break;
+ return;
+ #endif
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
@@ -575,79 +1047,126 @@ inline void process_commands()
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
- for(int i=0; i < NUM_AXIS; i++) {
+ saved_feedmultiply = feedmultiply;
+ previous_millis_cmd = millis();
+
+ feedmultiply = 100;
+
+ enable_endstops(true);
+
+ for(int i=0; i < NUM_AXIS; i++)
+ {
destination[i] = current_position[i];
}
feedrate = 0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
- if((home_all_axis) || (code_seen(axis_codes[0]))) {
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
- current_position[0] = -1.5 * X_MAX_LENGTH * X_HOME_DIR;
- destination[0] = 0;
- feedrate = homing_feedrate[0];
+ if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
+ {
+ if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1))
+ {
+ st_synchronize();
+ current_position[X_AXIS] = -1.5 * X_MAX_LENGTH * X_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 0;
+ feedrate = homing_feedrate[X_AXIS];
prepare_move();
-
- current_position[0] = 5 * X_HOME_DIR;
- destination[0] = 0;
+
+ st_synchronize();
+ current_position[X_AXIS] = 5 * X_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 0;
prepare_move();
-
- current_position[0] = -10 * X_HOME_DIR;
- destination[0] = 0;
+
+ st_synchronize();
+ current_position[X_AXIS] = -10 * X_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = 0;
+ feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
-
- current_position[0] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
- destination[0] = current_position[0];
+ st_synchronize();
+
+ current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0;
}
}
-
- if((home_all_axis) || (code_seen(axis_codes[1]))) {
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
- current_position[1] = -1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- destination[1] = 0;
+ //showString(PSTR("HOME X AXIS\r\n"));
- feedrate = homing_feedrate[1];
+ if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
+ {
+ if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1))
+ {
+ current_position[Y_AXIS] = -1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = 0;
+ feedrate = homing_feedrate[Y_AXIS];
prepare_move();
-
- current_position[1] = 5 * Y_HOME_DIR;
- destination[1] = 0;
+ st_synchronize();
+
+ current_position[Y_AXIS] = 5 * Y_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = 0;
prepare_move();
-
- current_position[1] = -10 * Y_HOME_DIR;
- destination[1] = 0;
+ st_synchronize();
+
+ current_position[Y_AXIS] = -10 * Y_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = 0;
+ feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
-
- current_position[1] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
- destination[1] = current_position[1];
+ st_synchronize();
+
+ current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0;
}
}
-
- if((home_all_axis) || (code_seen(axis_codes[2]))) {
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
- current_position[2] = -1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- destination[2] = 0;
- feedrate = homing_feedrate[2];
+ //showString(PSTR("HOME Y AXIS\r\n"));
+
+ if((home_all_axis) || (code_seen(axis_codes[Z_AXIS])))
+ {
+ if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1))
+ {
+ current_position[Z_AXIS] = -1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = 0;
+ feedrate = homing_feedrate[Z_AXIS];
prepare_move();
-
- current_position[2] = 2 * Z_HOME_DIR;
- destination[2] = 0;
+ st_synchronize();
+
+ current_position[Z_AXIS] = 2 * Z_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = 0;
prepare_move();
-
- current_position[2] = -5 * Z_HOME_DIR;
- destination[2] = 0;
+ st_synchronize();
+
+ current_position[Z_AXIS] = -3 * Z_HOME_DIR;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = 0;
+ feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
-
- current_position[2] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
- destination[2] = current_position[2];
- feedrate = 0;
-
- }
- }
+ st_synchronize();
+
+ current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+ destination[Z_AXIS] = current_position[Z_AXIS];
+ feedrate = 0;
+ }
+ }
+
+ //showString(PSTR("HOME Z AXIS\r\n"));
+ #ifdef ENDSTOPS_ONLY_FOR_HOMING
+ enable_endstops(false);
+ #endif
+
feedrate = saved_feedrate;
+ feedmultiply = saved_feedmultiply;
+
previous_millis_cmd = millis();
break;
case 90: // G90
@@ -657,11 +1176,21 @@ inline void process_commands()
relative_mode = true;
break;
case 92: // G92
- for(int i=0; i < NUM_AXIS; i++) {
+ if(!code_seen(axis_codes[E_AXIS]))
+ st_synchronize();
+
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
+ plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
-
+ default:
+ #ifdef SEND_WRONG_CMD_INFO
+ showString(PSTR("Unknown G-COM:"));
+ Serial.println(cmdbuffer[bufindr]);
+ #endif
+ break;
}
}
@@ -673,9 +1202,9 @@ inline void process_commands()
#ifdef SDSUPPORT
case 20: // M20 - list SD card
- Serial.println("Begin file list");
+ showString(PSTR("Begin file list\r\n"));
root.ls();
- Serial.println("End file list");
+ showString(PSTR("End file list\r\n"));
break;
case 21: // M21 - init SD card
sdmode = false;
@@ -686,72 +1215,88 @@ inline void process_commands()
sdactive = false;
break;
case 23: //M23 - Select file
- if(sdactive){
+ if(sdactive)
+ {
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
+
if(starpos!=NULL)
*(starpos-1)='\0';
- if (file.open(&root, strchr_pointer + 4, O_READ)) {
- Serial.print("File opened:");
+
+ if (file.open(&root, strchr_pointer + 4, O_READ))
+ {
+ showString(PSTR("File opened:"));
Serial.print(strchr_pointer + 4);
- Serial.print(" Size:");
+ showString(PSTR(" Size:"));
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
- Serial.println("File selected");
+ showString(PSTR("File selected\r\n"));
}
- else{
- Serial.println("file.open failed");
+ else
+ {
+ showString(PSTR("file.open failed\r\n"));
}
}
break;
case 24: //M24 - Start SD print
- if(sdactive){
+ if(sdactive)
+ {
sdmode = true;
}
break;
case 25: //M25 - Pause SD print
- if(sdmode){
+ if(sdmode)
+ {
sdmode = false;
}
break;
case 26: //M26 - Set SD index
- if(sdactive && code_seen('S')){
+ if(sdactive && code_seen('S'))
+ {
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
- if(sdactive){
- Serial.print("SD printing byte ");
+ if(sdactive)
+ {
+ showString(PSTR("SD printing byte "));
Serial.print(sdpos);
- Serial.print("/");
+ showString(PSTR("/"));
Serial.println(filesize);
- }else{
- Serial.println("Not SD printing");
+ }
+ else
+ {
+ showString(PSTR("Not SD printing\r\n"));
}
break;
- case 28: //M28 - Start SD write
- if(sdactive){
+ case 28: //M28 - Start SD write
+ if(sdactive)
+ {
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
+ if(starpos != NULL)
+ {
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+
+ if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+ {
+ showString(PSTR("open failed, File: "));
+ Serial.print(strchr_pointer + 4);
+ showString(PSTR("."));
+ }
+ else
{
- Serial.print("open failed, File: ");
- Serial.print(strchr_pointer + 4);
- Serial.print(".");
- }else{
- savetosd = true;
- Serial.print("Writing to file: ");
- Serial.println(strchr_pointer + 4);
+ savetosd = true;
+ showString(PSTR("Writing to file: "));
+ Serial.println(strchr_pointer + 4);
}
}
break;
@@ -759,6 +1304,38 @@ inline void process_commands()
//processed in write to file routine above
//savetosd = false;
break;
+ #ifndef SD_FAST_XFER_AKTIV
+ case 30: // M30 filename - Delete file
+ if(sdactive)
+ {
+ sdmode = false;
+ file.close();
+
+ starpos = (strchr(strchr_pointer + 4,'*'));
+
+ if(starpos!=NULL)
+ *(starpos-1)='\0';
+
+ if(file.remove(&root, strchr_pointer + 4))
+ {
+ showString(PSTR("File deleted\r\n"));
+ }
+ else
+ {
+ showString(PSTR("Deletion failed\r\n"));
+ }
+ }
+ break;
+ #else
+ case 30: //M30 - fast SD transfer
+ fast_xfer();
+ break;
+ case 31: //M31 - high speed xfer capabilities
+ showString(PSTR("RAW:"));
+ Serial.println(SD_FAST_XFER_CHUNK_SIZE);
+ break;
+ #endif
+
#endif
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
@@ -780,7 +1357,7 @@ inline void process_commands()
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
- analogWrite(pin_number, pin_status);
+ //analogWrite(pin_number, pin_status);
}
}
}
@@ -788,10 +1365,13 @@ inline void process_commands()
case 104: // M104
if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
#ifdef WATCHPERIOD
- if(target_raw > current_raw){
+ if(target_raw > current_raw)
+ {
watchmillis = max(1,millis());
watch_raw = current_raw;
- }else{
+ }
+ else
+ {
watchmillis = 0;
}
#endif
@@ -803,23 +1383,33 @@ inline void process_commands()
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
- tt = analog2temp(current_raw);
+ hotendtC = analog2temp(current_raw);
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
- bt = analog2tempBed(current_bed_raw);
+ bedtempC = analog2tempBed(current_bed_raw);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined HEATER_USES_AD595
- Serial.print("ok T:");
- Serial.print(tt);
+ showString(PSTR("ok T:"));
+ Serial.print(hotendtC);
#ifdef PIDTEMP
- Serial.print(" @:");
+ showString(PSTR(" @:"));
Serial.print(heater_duty);
- Serial.print(",");
+ /*
+ showString(PSTR(",P:"));
+ Serial.print(pTerm);
+ showString(PSTR(",I:"));
Serial.print(iTerm);
+ showString(PSTR(",D:"));
+ Serial.print(dTerm);
+ */
+ #ifdef AUTOTEMP
+ showString(PSTR(",AU:"));
+ Serial.print(autotemp_setpoint);
+ #endif
#endif
#if TEMP_1_PIN > -1 || defined BED_USES_AD595
- Serial.print(" B:");
- Serial.println(bt);
+ showString(PSTR(" B:"));
+ Serial.println(bedtempC);
#else
Serial.println();
#endif
@@ -831,10 +1421,13 @@ inline void process_commands()
case 109: { // M109 - Wait for extruder heater to reach target.
if (code_seen('S')) target_raw = temp2analogh(target_temp = code_value());
#ifdef WATCHPERIOD
- if(target_raw>current_raw){
+ if(target_raw>current_raw)
+ {
watchmillis = max(1,millis());
watch_raw = current_raw;
- }else{
+ }
+ else
+ {
watchmillis = 0;
}
#endif
@@ -855,7 +1448,7 @@ inline void process_commands()
#endif
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up/cooling down
{
- Serial.print("T:");
+ showString(PSTR("T:"));
Serial.println( analog2temp(current_raw) );
codenum = millis();
}
@@ -874,35 +1467,38 @@ inline void process_commands()
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
- if (code_seen('S')) target_bed_raw = temp2analogh(code_value());
+ if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
codenum = millis();
- while(current_bed_raw < target_bed_raw) {
+ while(current_bed_raw < target_bed_raw)
+ {
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
- tt=analog2temp(current_raw);
- Serial.print("T:");
- Serial.print( tt );
- Serial.print(" B:");
- Serial.println( analog2temp(current_bed_raw) );
+ hotendtC=analog2temp(current_raw);
+ showString(PSTR("T:"));
+ Serial.print( hotendtC );
+ showString(PSTR(" B:"));
+ Serial.println( analog2tempBed(current_bed_raw) );
codenum = millis();
}
- manage_heater();
+ manage_heater();
}
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
- if (code_seen('S')){
+ if (code_seen('S'))
+ {
WRITE(FAN_PIN, HIGH);
- analogWrite(FAN_PIN, constrain(code_value(),0,255) );
+ //analogWrite(FAN_PIN, constrain(code_value(),0,255) );
}
- else {
+ else
+ {
WRITE(FAN_PIN, HIGH);
- analogWrite(FAN_PIN, 255 );
+ //analogWrite(FAN_PIN, 255 );
}
break;
case 107: //M107 Fan Off
- analogWrite(FAN_PIN, 0);
+ //analogWrite(FAN_PIN, 0);
WRITE(FAN_PIN, LOW);
break;
#endif
@@ -921,82 +1517,195 @@ inline void process_commands()
axis_relative_modes[3] = true;
break;
case 84:
- if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; }
- else{ disable_x(); disable_y(); disable_z(); disable_e(); }
+ st_synchronize(); // wait for all movements to finish
+ if(code_seen('S'))
+ {
+ stepper_inactive_time = code_value() * 1000;
+ }
+ else
+ {
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+ }
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
}
- #ifdef RAMP_ACCELERATION
- setup_acceleration();
- #endif
-
+ // Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
+ // should also be used in setup() as well
+// long temp_max_intervals[NUM_AXIS];
+// for(int i=0; i < NUM_AXIS; i++)
+// {
+// axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
+// all steps_per_unit related variables
+// }
break;
case 115: // M115
- Serial.print("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1 UUID:");
- Serial.println(uuid);
+ showString(PSTR("FIRMWARE_NAME: Sprinter Experimental PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\r\n"));
+ //Serial.println(uuid);
+ showString(PSTR(_DEF_CHAR_UUID));
+ showString(PSTR("\r\n"));
break;
case 114: // M114
- Serial.print("X:");
+ showString(PSTR("X:"));
Serial.print(current_position[0]);
- Serial.print("Y:");
+ showString(PSTR("Y:"));
Serial.print(current_position[1]);
- Serial.print("Z:");
+ showString(PSTR("Z:"));
Serial.print(current_position[2]);
- Serial.print("E:");
+ showString(PSTR("E:"));
Serial.println(current_position[3]);
break;
case 119: // M119
+
#if (X_MIN_PIN > -1)
- Serial.print("x_min:");
- Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("x_min:"));
+ Serial.print((READ(X_MIN_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
- Serial.print("x_max:");
- Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("x_max:"));
+ Serial.print((READ(X_MAX_PIN)^X_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
- Serial.print("y_min:");
- Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("y_min:"));
+ Serial.print((READ(Y_MIN_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
- Serial.print("y_max:");
- Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("y_max:"));
+ Serial.print((READ(Y_MAX_PIN)^Y_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
- Serial.print("z_min:");
- Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("z_min:"));
+ Serial.print((READ(Z_MIN_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
- Serial.print("z_max:");
- Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
+ showString(PSTR("z_max:"));
+ Serial.print((READ(Z_MAX_PIN)^Z_ENDSTOP_INVERT)?"H ":"L ");
#endif
- Serial.println("");
+
+ showString(PSTR("\r\n"));
break;
- #ifdef RAMP_ACCELERATION
- //TODO: update for all axis, use for loop
case 201: // M201
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ if(code_seen(axis_codes[i]))
+ {
+ max_acceleration_units_per_sq_second[i] = code_value();
+ axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
}
- break;
+
+ #if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
+ #else
+ case 202: // M202 max feedrate mm/sec
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
+ }
+ break;
#endif
+ case 203: // M203 Temperature monitor
+ if(code_seen('S')) manage_monitor = code_value();
+ if(manage_monitor==100) manage_monitor=1; // Set 100 to heated bed
+ break;
+ case 204: // M204 acclereration S normal moves T filmanent only moves
+ if(code_seen('S')) move_acceleration = code_value() ;
+ if(code_seen('T')) retract_acceleration = code_value() ;
+ break;
+ case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+ if(code_seen('S')) minimumfeedrate = code_value();
+ if(code_seen('T')) mintravelfeedrate = code_value();
+ //if(code_seen('B')) minsegmenttime = code_value() ;
+ if(code_seen('X')) max_xy_jerk = code_value() ;
+ if(code_seen('Z')) max_z_jerk = code_value() ;
+ break;
+ case 220: // M220 S<factor in percent>- set speed factor override percentage
+ {
+ if(code_seen('S'))
+ {
+ feedmultiply = code_value() ;
+ if(feedmultiply < 20) feedmultiply = 20;
+ if(feedmultiply > 200) feedmultiply = 200;
+ feedmultiplychanged=true;
+ }
+ }
+ break;
+#ifdef USE_EEPROM_SETTINGS
+ case 500: // Store settings in EEPROM
+ {
+ EEPROM_StoreSettings();
+ }
+ break;
+ case 501: // Read settings from EEPROM
+ {
+ EEPROM_RetrieveSettings(false,true);
+ }
+ break;
+ case 502: // Revert to default settings
+ {
+ EEPROM_RetrieveSettings(true,true);
+ }
+ break;
+ case 503: // print settings currently in memory
+ {
+ EEPROM_printSettings();
+ }
+ break;
+#endif
+#ifdef DEBUG_HEATER_TEMP
+ case 601: // M601 show Extruder Temp jitter
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)|| defined HEATER_USES_AD595
+ if(current_raw_maxval > 0)
+ tt_maxval = analog2temp(current_raw_maxval);
+ if(current_raw_minval < 10000)
+ tt_minval = analog2temp(current_raw_minval);
+ #endif
+
+ showString(PSTR("Tmin:"));
+ Serial.print(tt_minval);
+ showString(PSTR(" / Tmax:"));
+ Serial.print(tt_maxval);
+ showString(PSTR(" "));
+ break;
+ case 602: // M602 reset Extruder Temp jitter
+ current_raw_minval = 32000;
+ current_raw_maxval = -32000;
+
+ showString(PSTR("T Minmax Reset "));
+ break;
+#endif
+ case 603: // M603 Free RAM
+ showString(PSTR("Free Ram: "));
+ Serial.println(FreeRam1());
+ break;
+ default:
+ #ifdef SEND_WRONG_CMD_INFO
+ showString(PSTR("Unknown M-COM:"));
+ Serial.println(cmdbuffer[bufindr]);
+ #endif
+ break;
+
}
}
else{
- Serial.println("Unknown command:");
+ showString(PSTR("Unknown command:\r\n"));
Serial.println(cmdbuffer[bufindr]);
}
@@ -1004,11 +1713,13 @@ inline void process_commands()
}
+
+
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
- Serial.print("Resend:");
+ showString(PSTR("Resend:"));
Serial.println(gcode_LastN + 1);
ClearToSend();
}
@@ -1020,724 +1731,1368 @@ void ClearToSend()
if(fromsd[bufindr])
return;
#endif
- Serial.println("ok");
+ showString(PSTR("ok\r\n"));
+ //Serial.println("ok");
}
-inline void get_coordinates()
+FORCE_INLINE void get_coordinates()
{
- for(int i=0; i < NUM_AXIS; i++) {
+ for(int i=0; i < NUM_AXIS; i++)
+ {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
- if(code_seen('F')) {
+
+ if(code_seen('F'))
+ {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
+#ifdef USE_ARC_FUNCTION
+FORCE_INLINE void get_arc_coordinates()
+{
+ get_coordinates();
+ if(code_seen('I')) offset[0] = code_value();
+ if(code_seen('J')) offset[1] = code_value();
+}
+#endif
+
+
void prepare_move()
{
- //Find direction
- for(int i=0; i < NUM_AXIS; i++) {
- if(destination[i] >= current_position[i]) move_direction[i] = 1;
- else move_direction[i] = 0;
- }
-
-
- if (min_software_endstops) {
- if (destination[0] < 0) destination[0] = 0.0;
- if (destination[1] < 0) destination[1] = 0.0;
- if (destination[2] < 0) destination[2] = 0.0;
- }
-
- if (max_software_endstops) {
- if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH;
- if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH;
- if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH;
- }
-
- for(int i=0; i < NUM_AXIS; i++) {
- axis_diff[i] = destination[i] - current_position[i];
- move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i];
- }
- if(feedrate < 10)
- feedrate = 10;
-
- //Feedrate calc based on XYZ travel distance
- float xy_d;
- //Check for cases where only one axis is moving - handle those without float sqrt
- if(abs(axis_diff[0]) > 0 && abs(axis_diff[1]) == 0 && abs(axis_diff[2])==0)
- d=abs(axis_diff[0]);
- else if(abs(axis_diff[0]) == 0 && abs(axis_diff[1]) > 0 && abs(axis_diff[2])==0)
- d=abs(axis_diff[1]);
- else if(abs(axis_diff[0]) == 0 && abs(axis_diff[1]) == 0 && abs(axis_diff[2])>0)
- d=abs(axis_diff[2]);
- //two or three XYZ axes moving
- else if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0) { //X or Y or both
- xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]);
- //check if Z involved - if so interpolate that too
- d = (abs(axis_diff[2])>0)?sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]):xy_d;
- }
- else if(abs(axis_diff[3]) > 0)
- d = abs(axis_diff[3]);
- else{ //zero length move
- #ifdef DEBUG_PREPARE_MOVE
-
- log_message("_PREPARE_MOVE - No steps to take!");
-
- #endif
- return;
- }
- time_for_move = (d / (feedrate / 60000000.0) );
- //Check max feedrate for each axis is not violated, update time_for_move if necessary
- for(int i = 0; i < NUM_AXIS; i++) {
- if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) {
- time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0));
- }
+ long help_feedrate = 0;
+
+ if (min_software_endstops)
+ {
+ if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
+ if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
+ if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
}
- //Calculate the full speed stepper interval for each axis
- for(int i=0; i < NUM_AXIS; i++) {
- if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100;
+
+ if (max_software_endstops)
+ {
+ if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
+ if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
+ if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
}
-
- #ifdef DEBUG_PREPARE_MOVE
- log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d);
- log_float("_PREPARE_MOVE - Move distance on the XYZ space", d);
- log_int("_PREPARE_MOVE - Commanded feedrate", feedrate);
- log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move);
- log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS);
- log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS);
- log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS);
- log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS);
- #endif
- unsigned long move_steps[NUM_AXIS];
+ help_feedrate = ((long)feedrate*(long)feedmultiply);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], help_feedrate/6000.0);
+
for(int i=0; i < NUM_AXIS; i++)
- move_steps[i] = move_steps_to_take[i];
- linear_move(move_steps); // make the move
+ {
+ current_position[i] = destination[i];
+ }
}
-inline void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1
+
+#ifdef USE_ARC_FUNCTION
+void prepare_arc_move(char isclockwise)
{
- //Determine direction of movement
- if (destination[0] > current_position[0]) WRITE(X_DIR_PIN,!INVERT_X_DIR);
- else WRITE(X_DIR_PIN,INVERT_X_DIR);
- if (destination[1] > current_position[1]) WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
- else WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- if (destination[2] > current_position[2]) WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
- else WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- if (destination[3] > current_position[3]) WRITE(E_DIR_PIN,!INVERT_E_DIR);
- else WRITE(E_DIR_PIN,INVERT_E_DIR);
- movereset:
- #if (X_MIN_PIN > -1)
- if(!move_direction[0]) if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MIN_PIN > -1)
- if(!move_direction[1]) if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) axis_steps_remaining[1]=0;
- #endif
- #if (Z_MIN_PIN > -1)
- if(!move_direction[2]) if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) axis_steps_remaining[2]=0;
- #endif
- #if (X_MAX_PIN > -1)
- if(move_direction[0]) if(READ(X_MAX_PIN) != X_ENDSTOP_INVERT) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MAX_PIN > -1)
- if(move_direction[1]) if(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT) axis_steps_remaining[1]=0;
- #endif
- # if(Z_MAX_PIN > -1)
- if(move_direction[2]) if(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT) axis_steps_remaining[2]=0;
- #endif
+
+ float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+ long help_feedrate = 0;
+
+ help_feedrate = ((long)feedrate*(long)feedmultiply);
+ // Trace the arc
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, help_feedrate/6000.0, r, isclockwise);
- //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
- // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram,
- // but will reduce code size
- if(axis_steps_remaining[0]) enable_x();
- if(axis_steps_remaining[1]) enable_y();
- if(axis_steps_remaining[2]) enable_z();
- if(axis_steps_remaining[3]) enable_e();
-
- //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm.
- unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes
- long axis_error[NUM_AXIS];
- int primary_axis;
- if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1;
- else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0;
- else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2;
- else primary_axis = 3;
- unsigned long steps_remaining = delta[primary_axis];
- unsigned long steps_to_take = steps_remaining;
- for(int i=0; i < NUM_AXIS; i++){
- if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2;
- steps_taken[i]=0;
- }
- interval = axis_interval[primary_axis];
- bool is_print_move = delta[3] > 0;
- #ifdef DEBUG_BRESENHAM
- log_int("_BRESENHAM - Primary axis", primary_axis);
- log_int("_BRESENHAM - Primary axis full speed interval", interval);
- log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS);
- log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS);
- #endif
+ // As far as the parser is concerned, the position is now == target. In reality the
+ // motion control system might still be processing the action and the real tool position
+ // in any intermediate location.
+ for(int8_t i=0; i < NUM_AXIS; i++)
+ {
+ current_position[i] = destination[i];
+ }
+}
+#endif
- //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it.
- #ifdef RAMP_ACCELERATION
- long max_speed_steps_per_second;
- long min_speed_steps_per_second;
- max_interval = axis_max_interval[primary_axis];
- #ifdef DEBUG_RAMP_ACCELERATION
- log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS);
- #endif
- unsigned long new_axis_max_intervals[NUM_AXIS];
- max_speed_steps_per_second = 100000000 / interval;
- min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted?
- //Calculate start speeds based on moving axes max start speed constraints.
- int slowest_start_axis = primary_axis;
- unsigned long slowest_start_axis_max_interval = max_interval;
- for(int i = 0; i < NUM_AXIS; i++)
- if (axis_steps_remaining[i] >0 &&
- i != primary_axis &&
- axis_max_interval[i] * axis_steps_remaining[i]/ axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) {
- slowest_start_axis = i;
- slowest_start_axis_max_interval = axis_max_interval[i];
- }
- for(int i = 0; i < NUM_AXIS; i++)
- if(axis_steps_remaining[i] >0) {
- // multiplying slowest_start_axis_max_interval by axis_steps_remaining[slowest_start_axis]
- // could lead to overflows when we have long distance moves (say, 390625*390625 > sizeof(unsigned long))
- float steps_remaining_ratio = (float) axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i];
- new_axis_max_intervals[i] = slowest_start_axis_max_interval * steps_remaining_ratio;
-
- if(i == primary_axis) {
- max_interval = new_axis_max_intervals[i];
- min_speed_steps_per_second = 100000000 / max_interval;
- }
- }
- //Calculate slowest axis plateau time
- float slowest_axis_plateau_time = 0;
- for(int i=0; i < NUM_AXIS ; i++) {
- if(axis_steps_remaining[i] > 0) {
- if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
- (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]);
- else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
- (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]);
- }
- }
- //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated
- steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time;
- plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time);
- #ifdef DEBUG_RAMP_ACCELERATION
- log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis);
- log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval);
- log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS);
- #endif
+FORCE_INLINE void kill()
+{
+ #if TEMP_0_PIN > -1
+ target_raw=0;
+ WRITE(HEATER_0_PIN,LOW);
#endif
- unsigned long steps_done = 0;
- #ifdef RAMP_ACCELERATION
- plateau_steps *= 1.01; // This is to compensate we use discrete intervals
- acceleration_enabled = true;
- unsigned long full_interval = interval;
- if(interval > max_interval) acceleration_enabled = false;
- boolean decelerating = false;
+ #if TEMP_1_PIN > -1
+ target_bed_raw=0;
+ if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
#endif
+
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
- unsigned long start_move_micros = micros();
- for(int i = 0; i < NUM_AXIS; i++) {
- axis_previous_micros[i] = start_move_micros * 100;
+}
+
+FORCE_INLINE void manage_inactivity(byte debug)
+{
+ if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
+
+ if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time)
+ {
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
}
+ check_axes_activity();
+}
- #ifdef DISABLE_CHECK_DURING_TRAVEL
- //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's
- // consider this a print move and perform heat management during it
- if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true;
- //else, if the move is a retract, consider it as a travel move for the sake of this feature
- else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false;
- #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL
- log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move);
- #endif
- #endif
- #ifdef DEBUG_MOVE_TIME
- unsigned long startmove = micros();
- #endif
+
+
+// Planner with Interrupt for Stepper
+
+/*
+ Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
+
+ s == speed, a == acceleration, t == time, d == distance
+
+ Basic definitions:
+
+ Speed[s_, a_, t_] := s + (a*t)
+ Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
+
+ Distance to reach a specific speed with a constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
+ d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
+
+ Speed after a given distance of travel with constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
+ m -> Sqrt[2 a d + s^2]
+
+ DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
+
+ When to start braking (di) to reach a specified destionation speed (s2) after accelerating
+ from initial speed s1 without ever stopping at a plateau:
+
+ Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
+ di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
+
+ IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
+ */
+
+
+static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
+static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
+static volatile unsigned char block_buffer_tail; // Index of the block to process now
+
+//===========================================================================
+//=============================private variables ============================
+//===========================================================================
+
+// Returns the index of the next block in the ring buffer
+// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
+static int8_t next_block_index(int8_t block_index) {
+ block_index++;
+ if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
+ return(block_index);
+}
+
+
+// Returns the index of the previous block in the ring buffer
+static int8_t prev_block_index(int8_t block_index) {
+ if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
+ block_index--;
+ return(block_index);
+}
+
+// The current position of the tool in absolute steps
+static long position[4];
+static float previous_speed[4]; // Speed of previous path line segment
+static float previous_nominal_speed; // Nominal speed of previous path line segment
+
+
+// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
+// given acceleration:
+FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
+{
+ if (acceleration!=0) {
+ return((target_rate*target_rate-initial_rate*initial_rate)/
+ (2.0*acceleration));
+ }
+ else {
+ return 0.0; // acceleration was 0, set acceleration distance to 0
+ }
+}
+
+// This function gives you the point at which you must start braking (at the rate of -acceleration) if
+// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
+// a total travel of distance. This can be used to compute the intersection point between acceleration and
+// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
+
+FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
+{
+ if (acceleration!=0) {
+ return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
+ (4.0*acceleration) );
+ }
+ else {
+ return 0.0; // acceleration was 0, set intersection distance to 0
+ }
+}
+
+// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
+
+void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
+ unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
+ unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
+
+ // Limit minimal step rate (Otherwise the timer will overflow.)
+ if(initial_rate <120) {initial_rate=120; }
+ if(final_rate < 120) {final_rate=120; }
- //move until no more steps remain
- while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) {
- #if defined RAMP_ACCELERATION && defined DISABLE_CHECK_DURING_ACC
- if(!accelerating && !decelerating) {
- //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
- #ifdef DISABLE_CHECK_DURING_TRAVEL
- if(is_print_move)
- #endif
- manage_heater();
- }
- #else
- #ifdef DISABLE_CHECK_DURING_MOVE
- {} //Do nothing
- #else
- //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
- #ifdef DISABLE_CHECK_DURING_TRAVEL
- if(is_print_move)
- #endif
- manage_heater();
- #endif
- #endif
- #ifdef RAMP_ACCELERATION
- //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
- if (acceleration_enabled && steps_done == 0) {
- interval = max_interval;
- } else if (acceleration_enabled && steps_done <= plateau_steps) {
- long current_speed = (long) ((((long) steps_per_sqr_second) / 100)
- * ((micros() - start_move_micros) / 100)/100 + (long) min_speed_steps_per_second);
- interval = 100000000 / current_speed;
- if (interval < full_interval) {
- accelerating = false;
- interval = full_interval;
- }
- if (steps_done >= steps_to_take / 2) {
- plateau_steps = steps_done;
- max_speed_steps_per_second = 100000000 / interval;
- accelerating = false;
+ long acceleration = block->acceleration_st;
+ int32_t accelerate_steps =
+ ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
+ int32_t decelerate_steps =
+ floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
+
+ // Calculate the size of Plateau of Nominal Rate.
+ int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
+
+ // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
+ // have to use intersection_distance() to calculate when to abort acceleration and start braking
+ // in order to reach the final_rate exactly at the end of this block.
+ if (plateau_steps < 0) {
+ accelerate_steps = ceil(
+ intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
+ accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
+ accelerate_steps = min(accelerate_steps,block->step_event_count);
+ plateau_steps = 0;
+ }
+
+ #ifdef ADVANCE
+ volatile long initial_advance = block->advance*entry_factor*entry_factor;
+ volatile long final_advance = block->advance*exit_factor*exit_factor;
+ #endif // ADVANCE
+
+ // block->accelerate_until = accelerate_steps;
+ // block->decelerate_after = accelerate_steps+plateau_steps;
+ CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
+ if(block->busy == false) { // Don't update variables if block is busy.
+ block->accelerate_until = accelerate_steps;
+ block->decelerate_after = accelerate_steps+plateau_steps;
+ block->initial_rate = initial_rate;
+ block->final_rate = final_rate;
+ #ifdef ADVANCE
+ block->initial_advance = initial_advance;
+ block->final_advance = final_advance;
+ #endif //ADVANCE
+ }
+ CRITICAL_SECTION_END;
+}
+
+// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
+// acceleration within the allotted distance.
+FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
+ return sqrt(target_velocity*target_velocity-2*acceleration*distance);
+}
+
+// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
+// This method will calculate the junction jerk as the euclidean distance between the nominal
+// velocities of the respective blocks.
+//inline float junction_jerk(block_t *before, block_t *after) {
+// return sqrt(
+// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
+//}
+
+
+
+// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
+void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!current) { return; }
+
+ if (next) {
+ // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
+ // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
+ // check for maximum allowable speed reductions to ensure maximum possible planned speed.
+ if (current->entry_speed != current->max_entry_speed) {
+
+ // If nominal length true, max junction speed is guaranteed to be reached. Only compute
+ // for max allowable speed if block is decelerating and nominal length is false.
+ if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
+ current->entry_speed = min( current->max_entry_speed,
+ max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
+ } else {
+ current->entry_speed = current->max_entry_speed;
}
- } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) {
- if (!accelerating) {
- start_move_micros = micros();
- accelerating = true;
- decelerating = true;
- }
- long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 100)
- * ((micros() - start_move_micros) / 100)/100));
- interval = 100000000 / current_speed;
- if (interval > max_interval)
- interval = max_interval;
- } else {
- //Else, we are just use the full speed interval as current interval
- interval = full_interval;
- accelerating = false;
+ current->recalculate_flag = true;
+
}
- #endif
+ } // Skip last block. Already initialized and set for recalculation.
+}
- //If there are x or y steps remaining, perform Bresenham algorithm
- if(axis_steps_remaining[primary_axis]) {
- #if (X_MIN_PIN > -1)
- if(!move_direction[0]) if(READ(X_MIN_PIN) != X_ENDSTOP_INVERT) if(primary_axis==0) break; else if(axis_steps_remaining[0]) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MIN_PIN > -1)
- if(!move_direction[1]) if(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT) if(primary_axis==1) break; else if(axis_steps_remaining[1]) axis_steps_remaining[1]=0;
- #endif
- #if (X_MAX_PIN > -1)
- if(move_direction[0]) if(READ(X_MAX_PIN) != X_ENDSTOP_INVERT) if(primary_axis==0) break; else if(axis_steps_remaining[0]) axis_steps_remaining[0]=0;
- #endif
- #if (Y_MAX_PIN > -1)
- if(move_direction[1]) if(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT) if(primary_axis==1) break; else if(axis_steps_remaining[1]) axis_steps_remaining[1]=0;
- #endif
- #if (Z_MIN_PIN > -1)
- if(!move_direction[2]) if(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT) if(primary_axis==2) break; else if(axis_steps_remaining[2]) axis_steps_remaining[2]=0;
- #endif
- #if (Z_MAX_PIN > -1)
- if(move_direction[2]) if(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT) if(primary_axis==2) break; else if(axis_steps_remaining[2]) axis_steps_remaining[2]=0;
- #endif
- timediff = micros() * 100 - axis_previous_micros[primary_axis];
- if(timediff<0){//check for overflow
- axis_previous_micros[primary_axis]=micros()*100;
- timediff=interval/2; //approximation
- }
- while(((unsigned long)timediff) >= interval && axis_steps_remaining[primary_axis] > 0) {
- steps_done++;
- steps_remaining--;
- axis_steps_remaining[primary_axis]--; timediff -= interval;
- do_step(primary_axis);
- axis_previous_micros[primary_axis] += interval;
- for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) {
- axis_error[i] = axis_error[i] - delta[i];
- if(axis_error[i] < 0) {
- do_step(i); axis_steps_remaining[i]--;
- axis_error[i] = axis_error[i] + delta[primary_axis];
- }
- }
- #ifdef STEP_DELAY_RATIO
- if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the reverse pass.
+void planner_reverse_pass() {
+ uint8_t block_index = block_buffer_head;
+ if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
+ block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
+ block_t *block[3] = { NULL, NULL, NULL };
+ while(block_index != block_buffer_tail) {
+ block_index = prev_block_index(block_index);
+ block[2]= block[1];
+ block[1]= block[0];
+ block[0] = &block_buffer[block_index];
+ planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
}
- #ifdef DEBUG_MOVE_TIME
- log_ulong("_MOVE_TIME - This move took", micros()-startmove);
- #endif
+}
+
+
+// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
+void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!previous) { return; }
- if(DISABLE_X) disable_x();
- if(DISABLE_Y) disable_y();
- if(DISABLE_Z) disable_z();
- if(DISABLE_E) disable_e();
+ // If the previous block is an acceleration block, but it is not long enough to complete the
+ // full speed change within the block, we need to adjust the entry speed accordingly. Entry
+ // speeds have already been reset, maximized, and reverse planned by reverse planner.
+ // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
+ if (!previous->nominal_length_flag) {
+ if (previous->entry_speed < current->entry_speed) {
+ double entry_speed = min( current->entry_speed,
+ max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
+
+ // Check for junction speed change
+ if (current->entry_speed != entry_speed) {
+ current->entry_speed = entry_speed;
+ current->recalculate_flag = true;
+ }
+ }
+ }
+}
+
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the forward pass.
+void planner_forward_pass() {
+ uint8_t block_index = block_buffer_tail;
+ block_t *block[3] = { NULL, NULL, NULL };
+
+ while(block_index != block_buffer_head) {
+ block[0] = block[1];
+ block[1] = block[2];
+ block[2] = &block_buffer[block_index];
+ planner_forward_pass_kernel(block[0],block[1],block[2]);
+ block_index = next_block_index(block_index);
+ }
+ planner_forward_pass_kernel(block[1], block[2], NULL);
+}
+
+// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
+// entry_factor for each junction. Must be called by planner_recalculate() after
+// updating the blocks.
+void planner_recalculate_trapezoids() {
+ int8_t block_index = block_buffer_tail;
+ block_t *current;
+ block_t *next = NULL;
- // Update current position partly based on direction, we probably can combine this with the direction code above...
- for(int i=0; i < NUM_AXIS; i++) {
- if (destination[i] > current_position[i]) current_position[i] = current_position[i] + steps_taken[i] / axis_steps_per_unit[i];
- else current_position[i] = current_position[i] - steps_taken[i] / axis_steps_per_unit[i];
+ while(block_index != block_buffer_head) {
+ current = next;
+ next = &block_buffer[block_index];
+ if (current) {
+ // Recalculate if current block entry or exit junction speed has changed.
+ if (current->recalculate_flag || next->recalculate_flag) {
+ // NOTE: Entry and exit factors always > 0 by all previous logic operations.
+ calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
+ next->entry_speed/current->nominal_speed);
+ current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
+ }
+ }
+ block_index = next_block_index( block_index );
+ }
+ // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
+ if(next != NULL) {
+ calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
+ MINIMUM_PLANNER_SPEED/next->nominal_speed);
+ next->recalculate_flag = false;
}
}
-void do_step(int axis) {
- switch(axis){
- case 0:
- WRITE(X_STEP_PIN, HIGH);
- break;
- case 1:
- WRITE(Y_STEP_PIN, HIGH);
- break;
- case 2:
- WRITE(Z_STEP_PIN, HIGH);
- break;
- case 3:
- WRITE(E_STEP_PIN, HIGH);
- break;
- }
- steps_taken[axis]+=1;
- WRITE(X_STEP_PIN, LOW);
- WRITE(Y_STEP_PIN, LOW);
- WRITE(Z_STEP_PIN, LOW);
- WRITE(E_STEP_PIN, LOW);
+// Recalculates the motion plan according to the following algorithm:
+//
+// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
+// so that:
+// a. The junction jerk is within the set limit
+// b. No speed reduction within one block requires faster deceleration than the one, true constant
+// acceleration.
+// 2. Go over every block in chronological order and dial down junction speed reduction values if
+// a. The speed increase within one block would require faster accelleration than the one, true
+// constant acceleration.
+//
+// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
+// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
+// the set limit. Finally it will:
+//
+// 3. Recalculate trapezoids for all blocks.
+
+void planner_recalculate() {
+ planner_reverse_pass();
+ planner_forward_pass();
+ planner_recalculate_trapezoids();
}
-#define HEAT_INTERVAL 250
-#ifdef HEATER_USES_MAX6675
-unsigned long max6675_previous_millis = 0;
-int max6675_temp = 2000;
+void plan_init() {
+ block_buffer_head = 0;
+ block_buffer_tail = 0;
+ memset(position, 0, sizeof(position)); // clear position
+ previous_speed[0] = 0.0;
+ previous_speed[1] = 0.0;
+ previous_speed[2] = 0.0;
+ previous_speed[3] = 0.0;
+ previous_nominal_speed = 0.0;
+}
+
+
+
+FORCE_INLINE void plan_discard_current_block() {
+ if (block_buffer_head != block_buffer_tail) {
+ block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
+ }
+}
+
+FORCE_INLINE block_t *plan_get_current_block() {
+ if (block_buffer_head == block_buffer_tail) {
+ return(NULL);
+ }
+ block_t *block = &block_buffer[block_buffer_tail];
+ block->busy = true;
+ return(block);
+}
+
+// Gets the current block. Returns NULL if buffer empty
+FORCE_INLINE bool blocks_queued()
+{
+ if (block_buffer_head == block_buffer_tail) {
+ return false;
+ }
+ else
+ return true;
+}
+
+void check_axes_activity() {
+ unsigned char x_active = 0;
+ unsigned char y_active = 0;
+ unsigned char z_active = 0;
+ unsigned char e_active = 0;
+ block_t *block;
+
+ if(block_buffer_tail != block_buffer_head) {
+ uint8_t block_index = block_buffer_tail;
+ while(block_index != block_buffer_head) {
+ block = &block_buffer[block_index];
+ if(block->steps_x != 0) x_active++;
+ if(block->steps_y != 0) y_active++;
+ if(block->steps_z != 0) z_active++;
+ if(block->steps_e != 0) e_active++;
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+ }
+ if((DISABLE_X) && (x_active == 0)) disable_x();
+ if((DISABLE_Y) && (y_active == 0)) disable_y();
+ if((DISABLE_Z) && (z_active == 0)) disable_z();
+ if((DISABLE_E) && (e_active == 0)) disable_e();
+}
-int read_max6675()
+
+float junction_deviation = 0.1;
+// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
+// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
+// calculation the caller must also provide the physical length of the line in millimeters.
+void plan_buffer_line(float x, float y, float z, float e, float feed_rate)
{
- if (millis() - max6675_previous_millis < HEAT_INTERVAL)
- return max6675_temp;
+ // Calculate the buffer head after we push this byte
+ int next_buffer_head = next_block_index(block_buffer_head);
+
+ // If the buffer is full: good! That means we are well ahead of the robot.
+ // Rest here until there is room in the buffer.
+ while(block_buffer_tail == next_buffer_head) {
+ manage_heater();
+ manage_inactivity(1);
+ }
+
+ // The target position of the tool in absolute steps
+ // Calculate target position in absolute steps
+ //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
+ long target[4];
+ target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+
+ // Prepare to set up new block
+ block_t *block = &block_buffer[block_buffer_head];
+
+ // Mark block as not busy (Not executed by the stepper interrupt)
+ block->busy = false;
+
+ // Number of steps for each axis
+ block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
+ block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
+ block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
+ block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
+ block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
+
+ // Bail if this is a zero-length block
+ if (block->step_event_count <=dropsegments) { return; };
+
+ // Compute direction bits for this block
+ block->direction_bits = 0;
+ if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
+ if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
+ if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
+ if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
- max6675_previous_millis = millis();
- max6675_temp = 0;
-
- #ifdef PRR
- PRR &= ~(1<<PRSPI);
- #elif defined PRR0
- PRR0 &= ~(1<<PRSPI);
- #endif
+ #ifdef DELAY_ENABLE
+ if(block->steps_x != 0)
+ {
+ enable_x();
+ delayMicroseconds(DELAY_ENABLE);
+ }
+ if(block->steps_y != 0)
+ {
+ enable_y();
+ delayMicroseconds(DELAY_ENABLE);
+ }
+ if(if(block->steps_z != 0))
+ {
+ enable_z();
+ delayMicroseconds(DELAY_ENABLE);
+ }
+ if(if(block->steps_e != 0))
+ {
+ enable_e();
+ delayMicroseconds(DELAY_ENABLE);
+ }
+ #else
+ //enable active axes
+ if(block->steps_x != 0) enable_x();
+ if(block->steps_y != 0) enable_y();
+ if(block->steps_z != 0) enable_z();
+ if(block->steps_e != 0) enable_e();
+ #endif
+
+ if (block->steps_e == 0) {
+ if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
+ }
+ else {
+ if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
+ }
+
+ // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
+ int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
+#ifdef SLOWDOWN
+ if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
+#endif
+
+ float delta_mm[4];
+ delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
+ delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
+ delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
+ delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
- SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
+ if ( block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0 ) {
+ block->millimeters = fabs(delta_mm[E_AXIS]);
+ } else {
+ block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
+ }
- // enable TT_MAX6675
- WRITE(MAX6675_SS, 0);
+ float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
- // ensure 100ns delay - a bit extra is fine
- delay(1);
+ // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
+ float inverse_second = feed_rate * inverse_millimeters;
- // read MSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp = SPDR;
- max6675_temp <<= 8;
+ block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
+ block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
+
- // read LSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp |= SPDR;
+
+
- // disable TT_MAX6675
- WRITE(MAX6675_SS, 1);
+/*
+ // segment time im micro seconds
+ long segment_time = lround(1000000.0/inverse_second);
+ if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
+ if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
+ segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
+ }
+ }
+ else {
+ if (segment_time<minsegmenttime) segment_time=minsegmenttime;
+ }
+ // END OF SLOW DOWN SECTION
+*/
- if (max6675_temp & 4)
- {
- // thermocouple open
- max6675_temp = 2000;
+
+ // Calculate speed in mm/sec for each axis
+ float current_speed[4];
+ for(int i=0; i < 4; i++) {
+ current_speed[i] = delta_mm[i] * inverse_second;
}
- else
- {
- max6675_temp = max6675_temp >> 3;
+
+ // Limit speed per axis
+ float speed_factor = 1.0; //factor <=1 do decrease speed
+ for(int i=0; i < 4; i++) {
+ if(fabs(current_speed[i]) > max_feedrate[i])
+ speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
}
- return max6675_temp;
-}
-#endif
+ // Correct the speed
+ if( speed_factor < 1.0) {
+// Serial.print("speed factor : "); Serial.println(speed_factor);
+ for(int i=0; i < 4; i++) {
+ if(fabs(current_speed[i]) > max_feedrate[i])
+ speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
+ /*
+ if(speed_factor < 0.1) {
+ Serial.print("speed factor : "); Serial.println(speed_factor);
+ Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
+ }
+ */
+ }
+ for(unsigned char i=0; i < 4; i++) {
+ current_speed[i] *= speed_factor;
+ }
+ block->nominal_speed *= speed_factor;
+ block->nominal_rate *= speed_factor;
+ }
-#ifdef CONTROLLERFAN_PIN
-unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
-unsigned long lastMotorCheck = 0;
+ // Compute and limit the acceleration rate for the trapezoid generator.
+ float steps_per_mm = block->step_event_count/block->millimeters;
+ if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
+ block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
+ }
+ else {
+ block->acceleration_st = ceil(move_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
+ // Limit acceleration per axis
+ if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
+ if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
+ if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
+ if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
+ }
+ block->acceleration = block->acceleration_st / steps_per_mm;
+ block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
+
+#if 0 // Use old jerk for now
+ // Compute path unit vector
+ double unit_vec[3];
-void controllerFan()
-{
- if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
- {
- lastMotorCheck = millis();
-
- if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled...
- {
- lastMotor = millis(); //... set time to NOW so the fan will turn on
+ unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
+ unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
+ unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
+
+ // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
+ // Let a circle be tangent to both previous and current path line segments, where the junction
+ // deviation is defined as the distance from the junction to the closest edge of the circle,
+ // colinear with the circle center. The circular segment joining the two paths represents the
+ // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
+ // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
+ // path width or max_jerk in the previous grbl version. This approach does not actually deviate
+ // from path, but used as a robust way to compute cornering speeds, as it takes into account the
+ // nonlinearities of both the junction angle and junction velocity.
+ double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
+
+ // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
+ if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
+ // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
+ // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
+ double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
+ - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
+ - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
+
+ // Skip and use default max junction speed for 0 degree acute junction.
+ if (cos_theta < 0.95) {
+ vmax_junction = min(previous_nominal_speed,block->nominal_speed);
+ // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
+ if (cos_theta > -0.95) {
+ // Compute maximum junction velocity based on maximum acceleration and junction deviation
+ double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
+ vmax_junction = min(vmax_junction,
+ sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
+ }
+ }
+ }
+#endif
+ // Start with a safe speed
+ float vmax_junction = max_xy_jerk/2;
+ if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
+ vmax_junction = max_z_jerk/2;
+ vmax_junction = min(vmax_junction, block->nominal_speed);
+
+ if ((moves_queued > 1) && (previous_nominal_speed > 0.0)) {
+ float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
+ if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
+ vmax_junction = block->nominal_speed;
}
+ if (jerk > max_xy_jerk) {
+ vmax_junction *= (max_xy_jerk/jerk);
+ }
+ if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
+ vmax_junction *= (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
+ }
+ }
+ block->max_entry_speed = vmax_junction;
- if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
- {
- WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
+ // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
+ double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
+ block->entry_speed = min(vmax_junction, v_allowable);
+
+ // Initialize planner efficiency flags
+ // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
+ // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
+ // the current block and next block junction speeds are guaranteed to always be at their maximum
+ // junction speeds in deceleration and acceleration, respectively. This is due to how the current
+ // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
+ // the reverse and forward planners, the corresponding block junction speed will always be at the
+ // the maximum junction speed and may always be ignored for any speed reduction checks.
+ if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
+ else { block->nominal_length_flag = false; }
+ block->recalculate_flag = true; // Always calculate trapezoid for new block
+
+ // Update previous path unit_vector and nominal speed
+ memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
+ previous_nominal_speed = block->nominal_speed;
+
+ #ifdef ADVANCE
+ // Calculate advance rate
+ if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
+ block->advance_rate = 0;
+ block->advance = 0;
}
- else
+ else {
+ long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
+ float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
+ (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
+ block->advance = advance;
+ if(acc_dist == 0) {
+ block->advance_rate = 0;
+ }
+ else {
+ block->advance_rate = advance / (float)acc_dist;
+ }
+ }
+
+ #endif // ADVANCE
+
+
+
+
+ calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
+ MINIMUM_PLANNER_SPEED/block->nominal_speed);
+
+ // Move buffer head
+ block_buffer_head = next_buffer_head;
+
+ // Update position
+ memcpy(position, target, sizeof(target)); // position[] = target[]
+
+ planner_recalculate();
+ #ifdef AUTOTEMP
+ getHighESpeed();
+ #endif
+ st_wake_up();
+}
+
+void plan_set_position(float x, float y, float z, float e)
+{
+ position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+
+ previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
+ previous_speed[0] = 0.0;
+ previous_speed[1] = 0.0;
+ previous_speed[2] = 0.0;
+ previous_speed[3] = 0.0;
+}
+
+#ifdef AUTOTEMP
+void getHighESpeed()
+{
+ static float oldt=0;
+ if(!autotemp_enabled)
+ return;
+ if((target_temp+2) < autotemp_min) //probably temperature set to zero.
+ return; //do nothing
+
+ float high=0;
+ uint8_t block_index = block_buffer_tail;
+
+ while(block_index != block_buffer_head)
+ {
+ float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
+ //se; units steps/sec;
+ if(se>high)
{
- WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
+ high=se;
}
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+
+ float t=autotemp_min+high*autotemp_factor;
+
+ if(t<autotemp_min)
+ t=autotemp_min;
+
+ if(t>autotemp_max)
+ t=autotemp_max;
+
+ if(oldt>t)
+ {
+ t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
}
+ oldt=t;
+ autotemp_setpoint = (int)t;
+
}
#endif
-void manage_heater()
+
+
+
+// Stepper
+
+// intRes = intIn1 * intIn2 >> 16
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 24 bit result
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %A1, %A2 \n\t" \
+"add %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r0 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (charIn1), \
+"d" (intIn2) \
+: \
+"r26" \
+)
+
+// intRes = longIn1 * longIn2 >> 24
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 48bit result
+#define MultiU24X24toH16(intRes, longIn1, longIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"mov r27, r1 \n\t" \
+"mul %B1, %C2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %C1, %C2 \n\t" \
+"add %B0, r0 \n\t" \
+"mul %C1, %B2 \n\t" \
+"add %A0, r0 \n\t" \
+"adc %B0, r1 \n\t" \
+"mul %A1, %C2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %B2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %C1, %A2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %A2 \n\t" \
+"add r27, r1 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r27 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (longIn1), \
+"d" (longIn2) \
+: \
+"r26" , "r27" \
+)
+
+// Some useful constants
+
+#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
+#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
+
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+ #define CHECK_ENDSTOPS if(check_endstops)
+#else
+ #define CHECK_ENDSTOPS
+#endif
+
+static block_t *current_block; // A pointer to the block currently being traced
+
+// Variables used by The Stepper Driver Interrupt
+static unsigned char out_bits; // The next stepping-bits to be output
+static long counter_x, // Counter variables for the bresenham line tracer
+ counter_y,
+ counter_z,
+ counter_e;
+static unsigned long step_events_completed; // The number of step events executed in the current block
+#ifdef ADVANCE
+ static long advance_rate, advance, final_advance = 0;
+ static short old_advance = 0;
+#endif
+static short e_steps;
+static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
+static long acceleration_time, deceleration_time;
+static unsigned short acc_step_rate; // needed for deccelaration start point
+static char step_loops;
+static unsigned short OCR1A_nominal;
+
+static volatile bool endstop_x_hit=false;
+static volatile bool endstop_y_hit=false;
+static volatile bool endstop_z_hit=false;
+
+static bool old_x_min_endstop=false;
+static bool old_x_max_endstop=false;
+static bool old_y_min_endstop=false;
+static bool old_y_max_endstop=false;
+static bool old_z_min_endstop=false;
+static bool old_z_max_endstop=false;
+
+static bool check_endstops = true;
+
+
+
+// __________________________
+// /| |\ _________________ ^
+// / | | \ /| |\ |
+// / | | \ / | | \ s
+// / | | | | | \ p
+// / | | | | | \ e
+// +-----+------------------------+---+--+---------------+----+ e
+// | BLOCK 1 | BLOCK 2 | d
+//
+// time ----->
+//
+// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+// first block->accelerate_until step_events_completed, then keeps going at constant speed until
+// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+// The slope of acceleration is calculated with the leib ramp alghorithm.
+
+void st_wake_up()
{
- if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
- return;
- previous_millis_heater = millis();
- #ifdef HEATER_USES_THERMISTOR
- current_raw = analogRead(TEMP_0_PIN);
- #ifdef DEBUG_HEAT_MGMT
- log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
- log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
- #endif
- // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
- // this switches it up so that the reading appears lower than target for the control logic.
- current_raw = 1023 - current_raw;
- #elif defined HEATER_USES_AD595
- current_raw = analogRead(TEMP_0_PIN);
- #elif defined HEATER_USES_MAX6675
- current_raw = read_max6675();
- #endif
- #ifdef SMOOTHING
- if (!nma) nma = SMOOTHFACTOR * current_raw;
- nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
- current_raw = nma / SMOOTHFACTOR;
- #endif
- #ifdef WATCHPERIOD
- if(watchmillis && millis() - watchmillis > WATCHPERIOD){
- if(watch_raw + 1 >= current_raw){
- target_temp = target_raw = 0;
- WRITE(HEATER_0_PIN,LOW);
- analogWrite(HEATER_0_PIN, 0);
- #if LED_PIN>-1
- WRITE(LED_PIN,LOW);
- #endif
- }else{
- watchmillis = 0;
- }
- }
- #endif
- #ifdef MINTEMP
- if(current_raw <= minttemp)
- target_temp = target_raw = 0;
+ // TCNT1 = 0;
+ if(busy == false)
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+}
+
+void enable_endstops(bool check)
+{
+ check_endstops = check;
+}
+
+FORCE_INLINE unsigned short calc_timer(unsigned short step_rate)
+{
+ unsigned short timer;
+ if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
+
+ if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
+ step_rate = (step_rate >> 2)&0x3fff;
+ step_loops = 4;
+ }
+ else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
+ step_rate = (step_rate >> 1)&0x7fff;
+ step_loops = 2;
+ }
+ else {
+ step_loops = 1;
+ }
+
+ if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
+ step_rate -= (F_CPU/500000); // Correct for minimal speed
+
+ if(step_rate >= (8*256)) // higher step rate
+ { // higher step rate
+ unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
+ unsigned char tmp_step_rate = (step_rate & 0x00ff);
+ unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
+ MultiU16X8toH16(timer, tmp_step_rate, gain);
+ timer = (unsigned short)pgm_read_word_near(table_address) - timer;
+ }
+ else
+ { // lower step rates
+ unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate)>>1) & 0xfffc;
+ timer = (unsigned short)pgm_read_word_near(table_address);
+ timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
+ }
+ if(timer < 100) { timer = 100; }//(20kHz this should never happen)
+ return timer;
+}
+
+// Initializes the trapezoid generator from the current block. Called whenever a new
+// block begins.
+FORCE_INLINE void trapezoid_generator_reset()
+{
+ #ifdef ADVANCE
+ advance = current_block->initial_advance;
+ final_advance = current_block->final_advance;
+ // Do E steps + advance steps
+ e_steps += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
#endif
- #ifdef MAXTEMP
- if(current_raw >= maxttemp) {
- target_temp = target_raw = 0;
- #if (ALARM_PIN > -1)
- WRITE(ALARM_PIN,HIGH);
+ deceleration_time = 0;
+
+
+ // step_rate to timer interval
+ acc_step_rate = current_block->initial_rate;
+ acceleration_time = calc_timer(acc_step_rate);
+ OCR1A = acceleration_time;
+ OCR1A_nominal = calc_timer(current_block->nominal_rate);
+
+}
+
+// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
+// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
+ISR(TIMER1_COMPA_vect)
+{
+ // If there is no current block, attempt to pop one from the buffer
+ if (current_block == NULL) {
+ // Anything in the buffer?
+ current_block = plan_get_current_block();
+ if (current_block != NULL) {
+ trapezoid_generator_reset();
+ counter_x = -(current_block->step_event_count >> 1);
+ counter_y = counter_x;
+ counter_z = counter_x;
+ counter_e = counter_x;
+ step_events_completed = 0;
+// #ifdef ADVANCE
+// e_steps = 0;
+// #endif
+ }
+ else {
+ OCR1A=2000; // 1kHz.
+ }
+ }
+
+ if (current_block != NULL) {
+ // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
+ out_bits = current_block->direction_bits;
+
+ // Set direction en check limit switches
+ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
+ WRITE(X_DIR_PIN, INVERT_X_DIR);
+ CHECK_ENDSTOPS
+ {
+ #if X_MIN_PIN > -1
+ bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOP_INVERT);
+ if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
+ endstop_x_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_x_min_endstop = x_min_endstop;
#endif
+ }
}
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595)
- #ifdef PIDTEMP
- int current_temp = analog2temp(current_raw);
- error = target_temp - current_temp;
- int delta_temp = current_temp - prev_temp;
- prev_temp = current_temp;
- pTerm = ((long)PID_PGAIN * error) / 256;
- const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT);
- heater_duty = H0 + pTerm;
- if(error < 20){
- temp_iState += error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = ((long)PID_IGAIN * temp_iState) / 256;
- heater_duty += iTerm;
+ else { // +direction
+ WRITE(X_DIR_PIN,!INVERT_X_DIR);
+ CHECK_ENDSTOPS
+ {
+ #if X_MAX_PIN > -1
+ bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOP_INVERT);
+ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
+ endstop_x_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_x_max_endstop = x_max_endstop;
+ #endif
}
- int prev_error = abs(target_temp - prev_temp);
- int log3 = 1; // discrete logarithm base 3, plus 1
- if(prev_error > 81){ prev_error /= 81; log3 += 4; }
- if(prev_error > 9){ prev_error /= 9; log3 += 2; }
- if(prev_error > 3){ prev_error /= 3; log3 ++; }
- dTerm = ((long)PID_DGAIN * delta_temp) / (256*log3);
- heater_duty += dTerm;
- heater_duty = constrain(heater_duty, 0, HEATER_CURRENT);
- analogWrite(HEATER_0_PIN, heater_duty);
- #if LED_PIN>-1
- analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255));
- #endif
- #else
- if(current_raw >= target_raw)
+ }
+
+ if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
+ WRITE(Y_DIR_PIN,INVERT_Y_DIR);
+ CHECK_ENDSTOPS
{
- WRITE(HEATER_0_PIN,LOW);
- analogWrite(HEATER_0_PIN, 0);
- #if LED_PIN>-1
- WRITE(LED_PIN,LOW);
+ #if Y_MIN_PIN > -1
+ bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOP_INVERT);
+ if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
+ endstop_y_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_y_min_endstop = y_min_endstop;
#endif
}
- else
+ }
+ else { // +direction
+ WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
+ CHECK_ENDSTOPS
{
- WRITE(HEATER_0_PIN,HIGH);
- analogWrite(HEATER_0_PIN, HEATER_CURRENT);
- #if LED_PIN > -1
- WRITE(LED_PIN,HIGH);
+ #if Y_MAX_PIN > -1
+ bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOP_INVERT);
+ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
+ endstop_y_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_y_max_endstop = y_max_endstop;
#endif
}
- #endif
- #endif
-
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
- return;
- previous_millis_bed_heater = millis();
- #ifndef TEMP_1_PIN
- return;
- #endif
- #if TEMP_1_PIN == -1
- return;
- #else
-
- #ifdef BED_USES_THERMISTOR
-
- current_bed_raw = analogRead(TEMP_1_PIN);
- #ifdef DEBUG_HEAT_MGMT
- log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
- log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
- #endif
-
- // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
- // this switches it up so that the reading appears lower than target for the control logic.
- current_bed_raw = 1023 - current_bed_raw;
- #elif defined BED_USES_AD595
- current_bed_raw = analogRead(TEMP_1_PIN);
+ }
- #endif
-
-
- #ifdef MINTEMP
- if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp)
- #else
- if(current_bed_raw >= target_bed_raw)
- #endif
- {
- WRITE(HEATER_1_PIN,LOW);
+ if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+ CHECK_ENDSTOPS
+ {
+ #if Z_MIN_PIN > -1
+ bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOP_INVERT);
+ if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_min_endstop = z_min_endstop;
+ #endif
+ }
}
- else
- {
- WRITE(HEATER_1_PIN,HIGH);
+ else { // +direction
+ WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
+ CHECK_ENDSTOPS
+ {
+ #if Z_MAX_PIN > -1
+ bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOP_INVERT);
+ if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
+ endstop_z_hit=true;
+ step_events_completed = current_block->step_event_count;
+ }
+ old_z_max_endstop = z_max_endstop;
+ #endif
+ }
}
- #endif
+
+ #ifndef ADVANCE
+ if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ }
+ else { // +direction
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+ }
+ #endif //!ADVANCE
-#ifdef CONTROLLERFAN_PIN
- controllerFan(); //Check if fan should be turned on to cool stepper drivers down
-#endif
-}
-#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
-int temp2analog_thermistor(int celsius, const short table[][2], int numtemps) {
- int raw = 0;
- byte i;
- for (i=1; i<numtemps; i++)
- {
- if (table[i][1] < celsius)
- {
- raw = table[i-1][0] +
- (celsius - table[i-1][1]) *
- (table[i][0] - table[i-1][0]) /
- (table[i][1] - table[i-1][1]);
+ for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
- break;
+ #ifdef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ counter_e -= current_block->step_event_count;
+ if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
+ e_steps--;
+ }
+ else {
+ e_steps++;
+ }
+ }
+ #endif //ADVANCE
+
+ counter_x += current_block->steps_x;
+ if (counter_x > 0) {
+ WRITE(X_STEP_PIN, HIGH);
+ counter_x -= current_block->step_event_count;
+ WRITE(X_STEP_PIN, LOW);
}
- }
- // Overflow: Set to last value in the table
- if (i == numtemps) raw = table[i-1][0];
+ counter_y += current_block->steps_y;
+ if (counter_y > 0) {
+ WRITE(Y_STEP_PIN, HIGH);
+ counter_y -= current_block->step_event_count;
+ WRITE(Y_STEP_PIN, LOW);
+ }
- return 1023 - raw;
-}
-#endif
+ counter_z += current_block->steps_z;
+ if (counter_z > 0) {
+ WRITE(Z_STEP_PIN, HIGH);
+ counter_z -= current_block->step_event_count;
+ WRITE(Z_STEP_PIN, LOW);
+ }
-#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
-int temp2analog_ad595(int celsius) {
- return celsius * 1024 / (500);
-}
-#endif
+ #ifndef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ WRITE(E_STEP_PIN, HIGH);
+ counter_e -= current_block->step_event_count;
+ WRITE(E_STEP_PIN, LOW);
+ }
+ #endif //!ADVANCE
+ step_events_completed += 1;
+ if(step_events_completed >= current_block->step_event_count) break;
+ }
+ // Calculare new timer value
+ unsigned short timer;
+ unsigned short step_rate;
+ if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
+
+ MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
+ acc_step_rate += current_block->initial_rate;
+
+ // upper limit
+ if(acc_step_rate > current_block->nominal_rate)
+ acc_step_rate = current_block->nominal_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(acc_step_rate);
+ OCR1A = timer;
+ acceleration_time += timer;
+ #ifdef ADVANCE
+ for(int8_t i=0; i < step_loops; i++) {
+ advance += advance_rate;
+ }
+ //if(advance > current_block->advance) advance = current_block->advance;
+ // Do E steps + advance steps
+ e_steps += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+
+ #endif
+ }
+ else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
+ MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
+
+ if(step_rate > acc_step_rate) { // Check step_rate stays positive
+ step_rate = current_block->final_rate;
+ }
+ else {
+ step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
+ }
+
+ // lower limit
+ if(step_rate < current_block->final_rate)
+ step_rate = current_block->final_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(step_rate);
+ OCR1A = timer;
+ deceleration_time += timer;
+ #ifdef ADVANCE
+ for(int8_t i=0; i < step_loops; i++) {
+ advance -= advance_rate;
+ }
+ if(advance < final_advance) advance = final_advance;
+ // Do E steps + advance steps
+ e_steps += ((advance >>8) - old_advance);
+ old_advance = advance >>8;
+ #endif //ADVANCE
+ }
+ else {
+ OCR1A = OCR1A_nominal;
+ }
-#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
-int temp2analog_max6675(int celsius) {
- return celsius * 4;
+ // If current block is finished, reset pointer
+ if (step_events_completed >= current_block->step_event_count) {
+ current_block = NULL;
+ plan_discard_current_block();
+ }
+ }
}
-#endif
-#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
-int analog2temp_thermistor(int raw,const short table[][2], int numtemps) {
- int celsius = 0;
- byte i;
-
- raw = 1023 - raw;
+#ifdef ADVANCE
- for (i=1; i<numtemps; i++)
- {
- if (table[i][0] > raw)
+unsigned char old_OCR0A;
+// Timer interrupt for E. e_steps is set in the main routine;
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPA_vect)
+{
+ old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
+ OCR0A = old_OCR0A;
+ // Set E direction (Depends on E direction + advance)
+ for(unsigned char i=0; i<4;i++)
+ {
+ if (e_steps != 0)
{
- celsius = table[i-1][1] +
- (raw - table[i-1][0]) *
- (table[i][1] - table[i-1][1]) /
- (table[i][0] - table[i-1][0]);
-
- break;
+ WRITE(E0_STEP_PIN, LOW);
+ if (e_steps < 0) {
+ WRITE(E0_DIR_PIN, INVERT_E0_DIR);
+ e_steps++;
+ WRITE(E0_STEP_PIN, HIGH);
+ }
+ else if (e_steps > 0) {
+ WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
+ e_steps--;
+ WRITE(E0_STEP_PIN, HIGH);
+ }
}
}
+ }
+#endif // ADVANCE
- // Overflow: Set to last value in the table
- if (i == numtemps) celsius = table[i-1][1];
-
- return celsius;
-}
-#endif
-
-#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
-int analog2temp_ad595(int raw) {
- return raw * 500 / 1024;
-}
-#endif
-
-#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
-int analog2temp_max6675(int raw) {
- return raw / 4;
-}
-#endif
-
-inline void kill()
+void st_init()
{
- #if TEMP_0_PIN > -1
- target_raw=0;
- WRITE(HEATER_0_PIN,LOW);
- #endif
- #if TEMP_1_PIN > -1
- target_bed_raw=0;
- if(HEATER_1_PIN > -1) WRITE(HEATER_1_PIN,LOW);
+ // waveform generation = 0100 = CTC
+ TCCR1B &= ~(1<<WGM13);
+ TCCR1B |= (1<<WGM12);
+ TCCR1A &= ~(1<<WGM11);
+ TCCR1A &= ~(1<<WGM10);
+
+ // output mode = 00 (disconnected)
+ TCCR1A &= ~(3<<COM1A0);
+ TCCR1A &= ~(3<<COM1B0);
+
+ // Set the timer pre-scaler
+ // Generally we use a divider of 8, resulting in a 2MHz timer
+ // frequency on a 16MHz MCU. If you are going to change this, be
+ // sure to regenerate speed_lookuptable.h with
+ // create_speed_lookuptable.py
+ TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
+
+ OCR1A = 0x4000;
+ TCNT1 = 0;
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+
+#ifdef ADVANCE
+ #if defined(TCCR0A) && defined(WGM01)
+ TCCR0A &= ~(1<<WGM01);
+ TCCR0A &= ~(1<<WGM00);
+ #endif
+ e_steps = 0;
+ TIMSK0 |= (1<<OCIE0A);
+#endif //ADVANCE
+
+ #ifdef ENDSTOPS_ONLY_FOR_HOMING
+ enable_endstops(false);
+ #else
+ enable_endstops(true);
#endif
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+ sei();
}
-inline void manage_inactivity(byte debug) {
-if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
-if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); }
+// Block until all buffered steps are executed
+void st_synchronize()
+{
+ while(blocks_queued()) {
+ manage_heater();
+ manage_inactivity(1);
+ }
}
-#ifdef RAMP_ACCELERATION
-void setup_acceleration() {
- for (int i=0; i < NUM_AXIS; i++) {
- axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- axis_travel_steps_per_sqr_second[i] = max_travel_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
-}
-#endif
#ifdef DEBUG
void log_message(char* message) {