diff options
Diffstat (limited to 'Tonokip_Firmware/Tonokip_Firmware.pde')
-rw-r--r-- | Tonokip_Firmware/Tonokip_Firmware.pde | 1548 |
1 files changed, 0 insertions, 1548 deletions
diff --git a/Tonokip_Firmware/Tonokip_Firmware.pde b/Tonokip_Firmware/Tonokip_Firmware.pde deleted file mode 100644 index 4528324..0000000 --- a/Tonokip_Firmware/Tonokip_Firmware.pde +++ /dev/null @@ -1,1548 +0,0 @@ -// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. -// Licence: GPL - -#include "Tonokip_Firmware.h" -#include "configuration.h" -#include "pins.h" - -#ifdef SDSUPPORT -#include "SdFat.h" -#endif - -// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html -// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes - -//Implemented Codes -//------------------- -// G0 -> G1 -// G1 - Coordinated Movement X Y Z E -// G4 - Dwell S<seconds> or P<milliseconds> -// G28 - Home all Axis -// G90 - Use Absolute Coordinates -// G91 - Use Relative Coordinates -// G92 - Set current position to cordinates given - -//RepRap M Codes -// M104 - Set extruder target temp -// M105 - Read current temp -// M106 - Fan on -// M107 - Fan off -// M109 - Wait for extruder current temp to reach target temp. -// M114 - Display current position - -//Custom M Codes -// M80 - Turn on Power Supply -// M20 - List SD card -// M21 - Init SD card -// M22 - Release SD card -// M23 - Select SD file (M23 filename.g) -// M24 - Start/resume SD print -// M25 - Pause SD print -// M26 - Set SD position in bytes (M26 S12345) -// M27 - Report SD print status -// M28 - Start SD write (M28 filename.g) -// M29 - Stop SD write -// M81 - Turn off Power Supply -// M82 - Set E codes absolute (default) -// M83 - Set E codes relative while in Absolute Coordinates (G90) mode -// M84 - Disable steppers until next move, -// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. -// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default) -// M92 - Set axis_steps_per_unit - same syntax as G92 -// M115 - Capabilities string -// M140 - Set bed target temp -// M190 - Wait for bed current temp to reach target temp. -// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) -// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) - - -//Stepper Movement Variables -char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; -bool move_direction[NUM_AXIS]; -const int STEP_PIN[NUM_AXIS] = {X_STEP_PIN, Y_STEP_PIN, Z_STEP_PIN, E_STEP_PIN}; -unsigned long axis_previous_micros[NUM_AXIS]; -unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater; -unsigned long move_steps_to_take[NUM_AXIS]; -#ifdef RAMP_ACCELERATION - unsigned long axis_max_interval[] = {100000000.0 / (max_start_speed_units_per_second[0] * axis_steps_per_unit[0]), - 100000000.0 / (max_start_speed_units_per_second[1] * axis_steps_per_unit[1]), - 100000000.0 / (max_start_speed_units_per_second[2] * axis_steps_per_unit[2]), - 100000000.0 / (max_start_speed_units_per_second[3] * axis_steps_per_unit[3])}; //TODO: refactor all things like this in a function, or move to setup() - // in a for loop - unsigned long max_interval; - unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], - max_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2], - max_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]}; - unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0], - max_travel_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_travel_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2], - max_travel_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]}; - unsigned long steps_per_sqr_second, plateau_steps; -#endif -boolean acceleration_enabled = false, accelerating = false; -unsigned long interval; -float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; -float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0}; -long axis_interval[NUM_AXIS]; // for speed delay -bool home_all_axis = true; -float feedrate = 1500, next_feedrate, saved_feedrate; -float time_for_move; -long gcode_N, gcode_LastN; -bool relative_mode = false; //Determines Absolute or Relative Coordinates -bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. -long timediff = 0; -//experimental feedrate calc -float d = 0; -float axis_diff[NUM_AXIS] = {0, 0, 0, 0}; -#ifdef STEP_DELAY_RATIO - long long_step_delay_ratio = STEP_DELAY_RATIO * 100; -#endif - - -// comm variables -#define MAX_CMD_SIZE 96 -#define BUFSIZE 8 -char cmdbuffer[BUFSIZE][MAX_CMD_SIZE]; -bool fromsd[BUFSIZE]; -int bufindr = 0; -int bufindw = 0; -int buflen = 0; -int i = 0; -char serial_char; -int serial_count = 0; -boolean comment_mode = false; -char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc - -// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the -// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25 -// degree increments (i.e. 100=25 deg). - -int target_raw = 0; -int current_raw = 0; -int target_bed_raw = 0; -int current_bed_raw = 0; -float tt = 0, bt = 0; -#ifdef PIDTEMP - int temp_iState = 0; - int temp_dState = 0; - int pTerm; - int iTerm; - int dTerm; - //int output; - int error; - int temp_iState_min = 100 * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN; - int temp_iState_max = 100 * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN; -#endif -#ifdef SMOOTHING - uint32_t nma = SMOOTHFACTOR * analogRead(TEMP_0_PIN); -#endif -#ifdef WATCHPERIOD - int watch_raw = -1000; - unsigned long watchmillis = 0; -#endif -#ifdef MINTEMP - int minttemp = temp2analog(MINTEMP); -#endif -#ifdef MAXTEMP -int maxttemp = temp2analog(MAXTEMP); -#endif - -//Inactivity shutdown variables -unsigned long previous_millis_cmd = 0; -unsigned long max_inactive_time = 0; -unsigned long stepper_inactive_time = 0; - -#ifdef SDSUPPORT - Sd2Card card; - SdVolume volume; - SdFile root; - SdFile file; - uint32_t filesize = 0; - uint32_t sdpos = 0; - bool sdmode = false; - bool sdactive = false; - bool savetosd = false; - int16_t n; - - void initsd(){ - sdactive = false; - #if SDSS >- 1 - if(root.isOpen()) - root.close(); - if (!card.init(SPI_FULL_SPEED,SDSS)){ - //if (!card.init(SPI_HALF_SPEED,SDSS)) - Serial.println("SD init fail"); - } - else if (!volume.init(&card)) - Serial.println("volume.init failed"); - else if (!root.openRoot(&volume)) - Serial.println("openRoot failed"); - else - sdactive = true; - #endif - } - - inline void write_command(char *buf){ - char* begin = buf; - char* npos = 0; - char* end = buf + strlen(buf) - 1; - - file.writeError = false; - if((npos = strchr(buf, 'N')) != NULL){ - begin = strchr(npos, ' ') + 1; - end = strchr(npos, '*') - 1; - } - end[1] = '\r'; - end[2] = '\n'; - end[3] = '\0'; - //Serial.println(begin); - file.write(begin); - if (file.writeError){ - Serial.println("error writing to file"); - } - } -#endif - - -void setup() -{ - Serial.begin(BAUDRATE); - Serial.println("start"); - for(int i = 0; i < BUFSIZE; i++){ - fromsd[i] = false; - } - - //Initialize Step Pins - for(int i=0; i < NUM_AXIS; i++) if(STEP_PIN[i] > -1) pinMode(STEP_PIN[i],OUTPUT); - - //Initialize Dir Pins - if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT); - if(Y_DIR_PIN > -1) pinMode(Y_DIR_PIN,OUTPUT); - if(Z_DIR_PIN > -1) pinMode(Z_DIR_PIN,OUTPUT); - if(E_DIR_PIN > -1) pinMode(E_DIR_PIN,OUTPUT); - - //Steppers default to disabled. - if(X_ENABLE_PIN > -1) if(!X_ENABLE_ON) digitalWrite(X_ENABLE_PIN,HIGH); - if(Y_ENABLE_PIN > -1) if(!Y_ENABLE_ON) digitalWrite(Y_ENABLE_PIN,HIGH); - if(Z_ENABLE_PIN > -1) if(!Z_ENABLE_ON) digitalWrite(Z_ENABLE_PIN,HIGH); - if(E_ENABLE_PIN > -1) if(!E_ENABLE_ON) digitalWrite(E_ENABLE_PIN,HIGH); - - //endstop pullups - #ifdef ENDSTOPPULLUPS - if(X_MIN_PIN > -1) { pinMode(X_MIN_PIN,INPUT); digitalWrite(X_MIN_PIN,HIGH);} - if(Y_MIN_PIN > -1) { pinMode(Y_MIN_PIN,INPUT); digitalWrite(Y_MIN_PIN,HIGH);} - if(Z_MIN_PIN > -1) { pinMode(Z_MIN_PIN,INPUT); digitalWrite(Z_MIN_PIN,HIGH);} - if(X_MAX_PIN > -1) { pinMode(X_MAX_PIN,INPUT); digitalWrite(X_MAX_PIN,HIGH);} - if(Y_MAX_PIN > -1) { pinMode(Y_MAX_PIN,INPUT); digitalWrite(Y_MAX_PIN,HIGH);} - if(Z_MAX_PIN > -1) { pinMode(Z_MAX_PIN,INPUT); digitalWrite(Z_MAX_PIN,HIGH);} - #endif - //Initialize Enable Pins - if(X_ENABLE_PIN > -1) pinMode(X_ENABLE_PIN,OUTPUT); - if(Y_ENABLE_PIN > -1) pinMode(Y_ENABLE_PIN,OUTPUT); - if(Z_ENABLE_PIN > -1) pinMode(Z_ENABLE_PIN,OUTPUT); - if(E_ENABLE_PIN > -1) pinMode(E_ENABLE_PIN,OUTPUT); - - if(HEATER_0_PIN > -1) pinMode(HEATER_0_PIN,OUTPUT); - if(HEATER_1_PIN > -1) pinMode(HEATER_1_PIN,OUTPUT); - -#ifdef HEATER_USES_MAX6675 - digitalWrite(SCK_PIN,0); - pinMode(SCK_PIN,OUTPUT); - - digitalWrite(MOSI_PIN,1); - pinMode(MOSI_PIN,OUTPUT); - - digitalWrite(MISO_PIN,1); - pinMode(MISO_PIN,INPUT); - - digitalWrite(MAX6675_SS,1); - pinMode(MAX6675_SS,OUTPUT); -#endif - -#ifdef SDSUPPORT - - //power to SD reader - #if SDPOWER > -1 - pinMode(SDPOWER,OUTPUT); - digitalWrite(SDPOWER,HIGH); - #endif - initsd(); - -#endif - -} - - -void loop() -{ - if(buflen<3) - get_command(); - - if(buflen){ -#ifdef SDSUPPORT - if(savetosd){ - if(strstr(cmdbuffer[bufindr],"M29") == NULL){ - write_command(cmdbuffer[bufindr]); - Serial.println("ok"); - }else{ - file.sync(); - file.close(); - savetosd = false; - Serial.println("Done saving file."); - } - }else{ - process_commands(); - } -#else - process_commands(); -#endif - buflen = (buflen-1); - bufindr = (bufindr + 1)%BUFSIZE; - } - //check heater every n milliseconds - manage_heater(); - manage_inactivity(1); - } - - -inline void get_command() -{ - while( Serial.available() > 0 && buflen < BUFSIZE) { - serial_char = Serial.read(); - if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) - { - if(!serial_count) return; //if empty line - cmdbuffer[bufindw][serial_count] = 0; //terminate string - if(!comment_mode){ - fromsd[bufindw] = false; - if(strstr(cmdbuffer[bufindw], "N") != NULL) - { - strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); - gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10)); - if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) { - Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:"); - Serial.println(gcode_LastN); - //Serial.println(gcode_N); - FlushSerialRequestResend(); - serial_count = 0; - return; - } - - if(strstr(cmdbuffer[bufindw], "*") != NULL) - { - byte checksum = 0; - byte count = 0; - while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; - strchr_pointer = strchr(cmdbuffer[bufindw], '*'); - - if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) { - Serial.print("Error: checksum mismatch, Last Line:"); - Serial.println(gcode_LastN); - FlushSerialRequestResend(); - serial_count = 0; - return; - } - //if no errors, continue parsing - } - else - { - Serial.print("Error: No Checksum with line number, Last Line:"); - Serial.println(gcode_LastN); - FlushSerialRequestResend(); - serial_count = 0; - return; - } - - gcode_LastN = gcode_N; - //if no errors, continue parsing - } - else // if we don't receive 'N' but still see '*' - { - if((strstr(cmdbuffer[bufindw], "*") != NULL)) - { - Serial.print("Error: No Line Number with checksum, Last Line:"); - Serial.println(gcode_LastN); - serial_count = 0; - return; - } - } - if((strstr(cmdbuffer[bufindw], "G") != NULL)){ - strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); - switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){ - case 0: - case 1: - #ifdef SDSUPPORT - if(savetosd) - break; - #endif - Serial.println("ok"); - break; - default: - break; - } - - } - bufindw = (bufindw + 1)%BUFSIZE; - buflen += 1; - - } - comment_mode = false; //for new command - serial_count = 0; //clear buffer - } - else - { - if(serial_char == ';') comment_mode = true; - if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; - } - } -#ifdef SDSUPPORT -if(!sdmode || serial_count!=0){ - return; -} - while( filesize > sdpos && buflen < BUFSIZE) { - n = file.read(); - serial_char = (char)n; - if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) - { - sdpos = file.curPosition(); - if(sdpos >= filesize){ - sdmode = false; - Serial.println("Done printing file"); - } - if(!serial_count) return; //if empty line - cmdbuffer[bufindw][serial_count] = 0; //terminate string - if(!comment_mode){ - fromsd[bufindw] = true; - buflen += 1; - bufindw = (bufindw + 1)%BUFSIZE; - } - comment_mode = false; //for new command - serial_count = 0; //clear buffer - } - else - { - if(serial_char == ';') comment_mode = true; - if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char; - } -} -#endif - -} - - -inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); } -inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); } -inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found - -inline bool code_seen(char code) -{ - strchr_pointer = strchr(cmdbuffer[bufindr], code); - return (strchr_pointer != NULL); //Return True if a character was found -} - -inline void process_commands() -{ - unsigned long codenum; //throw away variable - char *starpos = NULL; - - if(code_seen('G')) - { - switch((int)code_value()) - { - case 0: // G0 -> G1 - case 1: // G1 - #ifdef DISABLE_CHECK_DURING_ACC || DISABLE_CHECK_DURING_MOVE || DISABLE_CHECK_DURING_TRAVEL - manage_heater(); - #endif - get_coordinates(); // For X Y Z E F - prepare_move(); - previous_millis_cmd = millis(); - //ClearToSend(); - return; - //break; - case 4: // G4 dwell - codenum = 0; - if(code_seen('P')) codenum = code_value(); // milliseconds to wait - if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait - codenum += millis(); // keep track of when we started waiting - while(millis() < codenum ){ - manage_heater(); - } - break; - case 28: //G28 Home all Axis one at a time - saved_feedrate = feedrate; - for(int i=0; i < NUM_AXIS; i++) { - destination[i] = 0; - current_position[i] = 0; - } - feedrate = 0; - - home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); - - if((home_all_axis) || (code_seen('X'))) { - if((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) { - current_position[0] = 0; - destination[0] = 1.5 * X_MAX_LENGTH * X_HOME_DIR; - feedrate = max_start_speed_units_per_second[0] * 60; - prepare_move(); - - current_position[0] = 0; - destination[0] = -1 * X_HOME_DIR; - prepare_move(); - - destination[0] = 10 * X_HOME_DIR; - prepare_move(); - - current_position[0] = 0; - destination[0] = 0; - feedrate = 0; - } - } - - if((home_all_axis) || (code_seen('X'))) { - if((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) { - current_position[1] = 0; - destination[1] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; - feedrate = max_start_speed_units_per_second[1] * 60; - prepare_move(); - - current_position[1] = 0; - destination[1] = -1 * Y_HOME_DIR; - prepare_move(); - - destination[1] = 10 * Y_HOME_DIR; - prepare_move(); - - current_position[1] = 0; - destination[1] = 0; - feedrate = 0; - } - } - - if((home_all_axis) || (code_seen('X'))) { - if((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) { - current_position[2] = 0; - destination[2] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; - feedrate = max_feedrate[2]/2; - prepare_move(); - - current_position[2] = 0; - destination[2] = -1 * Z_HOME_DIR; - prepare_move(); - - destination[2] = 10 * Z_HOME_DIR; - prepare_move(); - - current_position[2] = 0; - destination[2] = 0; - feedrate = 0; - } - } - - feedrate = saved_feedrate; - previous_millis_cmd = millis(); - break; - case 90: // G90 - relative_mode = false; - break; - case 91: // G91 - relative_mode = true; - break; - case 92: // G92 - for(int i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) current_position[i] = code_value(); - } - break; - - } - } - - else if(code_seen('M')) - { - - switch( (int)code_value() ) - { -#ifdef SDSUPPORT - - case 20: // M20 - list SD card - Serial.println("Begin file list"); - root.ls(); - Serial.println("End file list"); - break; - case 21: // M21 - init SD card - sdmode = false; - initsd(); - break; - case 22: //M22 - release SD card - sdmode = false; - sdactive = false; - break; - case 23: //M23 - Select file - if(sdactive){ - sdmode = false; - file.close(); - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos!=NULL) - *(starpos-1)='\0'; - if (file.open(&root, strchr_pointer + 4, O_READ)) { - Serial.print("File opened:"); - Serial.print(strchr_pointer + 4); - Serial.print(" Size:"); - Serial.println(file.fileSize()); - sdpos = 0; - filesize = file.fileSize(); - Serial.println("File selected"); - } - else{ - Serial.println("file.open failed"); - } - } - break; - case 24: //M24 - Start SD print - if(sdactive){ - sdmode = true; - } - break; - case 25: //M25 - Pause SD print - if(sdmode){ - sdmode = false; - } - break; - case 26: //M26 - Set SD index - if(sdactive && code_seen('S')){ - sdpos = code_value_long(); - file.seekSet(sdpos); - } - break; - case 27: //M27 - Get SD status - if(sdactive){ - Serial.print("SD printing byte "); - Serial.print(sdpos); - Serial.print("/"); - Serial.println(filesize); - }else{ - Serial.println("Not SD printing"); - } - break; - case 28: //M28 - Start SD write - if(sdactive){ - char* npos = 0; - file.close(); - sdmode = false; - starpos = (strchr(strchr_pointer + 4,'*')); - if(starpos != NULL){ - npos = strchr(cmdbuffer[bufindr], 'N'); - strchr_pointer = strchr(npos,' ') + 1; - *(starpos-1) = '\0'; - } - if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) - { - Serial.print("open failed, File: "); - Serial.print(strchr_pointer + 4); - Serial.print("."); - }else{ - savetosd = true; - Serial.print("Writing to file: "); - Serial.println(strchr_pointer + 4); - } - } - break; - case 29: //M29 - Stop SD write - //processed in write to file routine above - //savetosd = false; - break; -#endif - case 104: // M104 - if (code_seen('S')) target_raw = temp2analog(code_value()); - #ifdef WATCHPERIOD - if(target_raw > current_raw){ - watchmillis = max(1,millis()); - watch_raw = current_raw; - }else{ - watchmillis = 0; - } - #endif - break; - case 140: // M140 set bed temp - if (code_seen('S')) target_bed_raw = temp2analogBed(code_value()); - break; - case 105: // M105 - #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) - tt = analog2temp(current_raw); - #endif - #if TEMP_1_PIN > -1 - bt = analog2tempBed(current_bed_raw); - #endif - #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) - Serial.print("ok T:"); - Serial.print(tt); - #if TEMP_1_PIN > -1 - Serial.print(" B:"); - Serial.println(bt); - #else - Serial.println(); - #endif - #else - Serial.println("No thermistors - no temp"); - #endif - return; - //break; - case 109: // M109 - Wait for extruder heater to reach target. - if (code_seen('S')) target_raw = temp2analog(code_value()); - #ifdef WATCHPERIOD - if(target_raw>current_raw){ - watchmillis = max(1,millis()); - watch_raw = current_raw; - }else{ - watchmillis = 0; - } - #endif - codenum = millis(); - while(current_raw < target_raw) { - if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. - { - Serial.print("T:"); - Serial.println( analog2temp(current_raw) ); - codenum = millis(); - } - manage_heater(); - } - break; - case 190: // M190 - Wait bed for heater to reach target. - #if TEMP_1_PIN > -1 - if (code_seen('S')) target_bed_raw = temp2analog(code_value()); - codenum = millis(); - while(current_bed_raw < target_bed_raw) { - if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. - { - tt=analog2temp(current_raw); - Serial.print("T:"); - Serial.println( tt ); - Serial.print("ok T:"); - Serial.print( tt ); - Serial.print(" B:"); - Serial.println( analog2temp(current_bed_raw) ); - codenum = millis(); - } - manage_heater(); - } - #endif - break; - case 106: //M106 Fan On - if (code_seen('S')){ - digitalWrite(FAN_PIN, HIGH); - analogWrite(FAN_PIN, constrain(code_value(),0,255) ); - } - else - digitalWrite(FAN_PIN, HIGH); - break; - case 107: //M107 Fan Off - analogWrite(FAN_PIN, 0); - - digitalWrite(FAN_PIN, LOW); - break; - case 80: // M81 - ATX Power On - if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND - break; - case 81: // M81 - ATX Power Off - if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating - break; - case 82: - axis_relative_modes[3] = false; - break; - case 83: - axis_relative_modes[3] = true; - break; - case 84: - if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; } - else{ disable_x(); disable_y(); disable_z(); disable_e(); } - break; - case 85: // M85 - code_seen('S'); - max_inactive_time = code_value() * 1000; - break; - case 92: // M92 - for(int i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value(); - } - - //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it - // should also be used in setup() as well - #ifdef RAMP_ACCELERATION - long temp_max_intervals[NUM_AXIS]; - for(int i=0; i < NUM_AXIS; i++) { - axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for - // all steps_per_unit related variables - } - #endif - break; - case 115: // M115 - Serial.println("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1"); - break; - case 114: // M114 - Serial.print("X:"); - Serial.print(current_position[0]); - Serial.print("Y:"); - Serial.print(current_position[1]); - Serial.print("Z:"); - Serial.print(current_position[2]); - Serial.print("E:"); - Serial.println(current_position[3]); - break; - #ifdef RAMP_ACCELERATION - //TODO: update for all axis, use for loop - case 201: // M201 - for(int i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; - } - break; - case 202: // M202 - for(int i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; - } - break; - #endif - } - - } - else{ - Serial.println("Unknown command:"); - Serial.println(cmdbuffer[bufindr]); - } - - ClearToSend(); - -} - -inline void FlushSerialRequestResend() -{ - //char cmdbuffer[bufindr][100]="Resend:"; - Serial.flush(); - Serial.print("Resend:"); - Serial.println(gcode_LastN + 1); - ClearToSend(); -} - -inline void ClearToSend() -{ - previous_millis_cmd = millis(); - #ifdef SDSUPPORT - if(fromsd[bufindr]) - return; - #endif - Serial.println("ok"); -} - -inline void get_coordinates() -{ - for(int i=0; i < NUM_AXIS; i++) { - if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i]; - else destination[i] = current_position[i]; //Are these else lines really needed? - } - if(code_seen('F')) { - next_feedrate = code_value(); - if(next_feedrate > 0.0) feedrate = next_feedrate; - } -} - -inline void prepare_move() -{ - //Find direction - for(int i=0; i < NUM_AXIS; i++) { - if(destination[i] >= current_position[i]) move_direction[i] = 1; - else move_direction[i] = 0; - } - - - if (min_software_endstops) { - if (destination[0] < 0) destination[0] = 0.0; - if (destination[1] < 0) destination[1] = 0.0; - if (destination[2] < 0) destination[2] = 0.0; - } - - if (max_software_endstops) { - if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH; - if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH; - if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH; - } - - for(int i=0; i < NUM_AXIS; i++) { - axis_diff[i] = destination[i] - current_position[i]; - move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i]; - } - if(feedrate < 10) - feedrate = 10; - - //Feedrate calc based on XYZ travel distance - float xy_d; - if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0 || abs(axis_diff[2])) { - xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]); - d = sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]); - } - else if(abs(axis_diff[3]) > 0) - d = abs(axis_diff[3]); - #ifdef DEBUG_PREPARE_MOVE - else { - log_message("_PREPARE_MOVE - No steps to take!"); - } - #endif - time_for_move = (d / (feedrate / 60000000.0) ); - //Check max feedrate for each axis is not violated, update time_for_move if necessary - for(int i = 0; i < NUM_AXIS; i++) { - if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) { - time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0)); - } - } - //Calculate the full speed stepper interval for each axis - for(int i=0; i < NUM_AXIS; i++) { - if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100; - } - - #ifdef DEBUG_PREPARE_MOVE - log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d); - log_float("_PREPARE_MOVE - Move distance on the XYZ space", d); - log_float("_PREPARE_MOVE - Commanded feedrate", feedrate); - log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move); - log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS); - log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS); - log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS); - log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS); - #endif - - unsigned long move_steps[NUM_AXIS]; - for(int i=0; i < NUM_AXIS; i++) - move_steps[i] = move_steps_to_take[i]; - linear_move(move_steps); // make the move -} - -void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1 -{ - //Determine direction of movement - if (destination[0] > current_position[0]) digitalWrite(X_DIR_PIN,!INVERT_X_DIR); - else digitalWrite(X_DIR_PIN,INVERT_X_DIR); - if (destination[1] > current_position[1]) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR); - else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR); - if (destination[2] > current_position[2]) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR); - else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR); - if (destination[3] > current_position[3]) digitalWrite(E_DIR_PIN,!INVERT_E_DIR); - else digitalWrite(E_DIR_PIN,INVERT_E_DIR); - - if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0; - if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0; - if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0; - if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0; - if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0; - if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0; - - - //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration. - // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram, - // but will reduce code size - if(axis_steps_remaining[0]) enable_x(); - if(axis_steps_remaining[1]) enable_y(); - if(axis_steps_remaining[2]) enable_z(); - if(axis_steps_remaining[3]) enable_e(); - - //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm. - unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes - long axis_error[NUM_AXIS]; - unsigned int primary_axis; - if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1; - else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0; - else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2; - else primary_axis = 3; - unsigned long steps_remaining = delta[primary_axis]; - unsigned long steps_to_take = steps_remaining; - for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2; - interval = axis_interval[primary_axis]; - bool is_print_move = delta[3] > 0; - #ifdef DEBUG_BRESENHAM - log_int("_BRESENHAM - Primary axis", primary_axis); - log_int("_BRESENHAM - Primary axis full speed interval", interval); - log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS); - log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS); - #endif - - //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it. - #ifdef RAMP_ACCELERATION - long max_speed_steps_per_second; - long min_speed_steps_per_second; - max_interval = axis_max_interval[primary_axis]; - #ifdef DEBUG_RAMP_ACCELERATION - log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS); - #endif - unsigned long new_axis_max_intervals[NUM_AXIS]; - max_speed_steps_per_second = 100000000 / interval; - min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted? - //Calculate start speeds based on moving axes max start speed constraints. - int slowest_start_axis = primary_axis; - unsigned long slowest_start_axis_max_interval = max_interval; - for(int i = 0; i < NUM_AXIS; i++) - if (axis_steps_remaining[i] >0 && i != primary_axis && axis_max_interval[i] * axis_steps_remaining[i] - / axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) { - slowest_start_axis = i; - slowest_start_axis_max_interval = axis_max_interval[i]; - } - for(int i = 0; i < NUM_AXIS; i++) - if(axis_steps_remaining[i] >0) { - new_axis_max_intervals[i] = slowest_start_axis_max_interval * axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i]; - if(i == primary_axis) { - max_interval = new_axis_max_intervals[i]; - min_speed_steps_per_second = 100000000 / max_interval; - } - } - //Calculate slowest axis plateau time - float slowest_axis_plateau_time = 0; - for(int i=0; i < NUM_AXIS ; i++) { - if(axis_steps_remaining[i] > 0) { - if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, - (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]); - else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time, - (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]); - } - } - //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated - steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time; - plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time); - #ifdef DEBUG_RAMP_ACCELERATION - log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis); - log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval); - log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS); - #endif - #endif - - unsigned long steps_done = 0; - #ifdef RAMP_ACCELERATION - plateau_steps *= 1.01; // This is to compensate we use discrete intervals - acceleration_enabled = true; - long full_interval = interval; - if(interval > max_interval) acceleration_enabled = false; - boolean decelerating = false; - #endif - - unsigned long start_move_micros = micros(); - for(int i = 0; i < NUM_AXIS; i++) { - axis_previous_micros[i] = start_move_micros * 100; - } - - #ifdef DISABLE_CHECK_DURING_TRAVEL - //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's - // consider this a print move and perform heat management during it - if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true; - //else, if the move is a retract, consider it as a travel move for the sake of this feature - else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false; - #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL - log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move); - #endif - #endif - - #ifdef DEBUG_MOVE_TIME - unsigned long startmove = micros(); - #endif - - //move until no more steps remain - while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) { - #ifdef DISABLE_CHECK_DURING_ACC - if(!accelerating && !decelerating) { - //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp - #ifdef DISABLE_CHECK_DURING_TRAVEL - if(is_print_move) - #endif - manage_heater(); - } - #else - #ifdef DISABLE_CHECK_DURING_MOVE - {} //Do nothing - #else - //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp - #ifdef DISABLE_CHECK_DURING_TRAVEL - if(is_print_move) - #endif - manage_heater(); - #endif - #endif - #ifdef RAMP_ACCELERATION - //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval - if (acceleration_enabled && steps_done == 0) { - interval = max_interval; - } else if (acceleration_enabled && steps_done <= plateau_steps) { - long current_speed = (long) ((((long) steps_per_sqr_second) / 10000) - * ((micros() - start_move_micros) / 100) + (long) min_speed_steps_per_second); - interval = 100000000 / current_speed; - if (interval < full_interval) { - accelerating = false; - interval = full_interval; - } - if (steps_done >= steps_to_take / 2) { - plateau_steps = steps_done; - max_speed_steps_per_second = 100000000 / interval; - accelerating = false; - } - } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) { - if (!accelerating) { - start_move_micros = micros(); - accelerating = true; - decelerating = true; - } - long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 10000) - * ((micros() - start_move_micros) / 100))); - interval = 100000000 / current_speed; - if (interval > max_interval) - interval = max_interval; - } else { - //Else, we are just use the full speed interval as current interval - interval = full_interval; - accelerating = false; - } - #endif - - //If there are x or y steps remaining, perform Bresenham algorithm - if(axis_steps_remaining[primary_axis]) { - if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break; - if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break; - if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break; - if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break; - timediff = micros() * 100 - axis_previous_micros[primary_axis]; - while(timediff >= interval && axis_steps_remaining[primary_axis] > 0) { - steps_done++; - steps_remaining--; - axis_steps_remaining[primary_axis]--; timediff -= interval; - do_step_update_micros(primary_axis); - for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) { - axis_error[i] = axis_error[i] - delta[i]; - if(axis_error[i] < 0) { - do_step(i); axis_steps_remaining[i]--; - axis_error[i] = axis_error[i] + delta[primary_axis]; - } - } - #ifdef STEP_DELAY_RATIO - if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000); - #endif - #ifdef STEP_DELAY_MICROS - if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS); - #endif - } - } - } - #ifdef DEBUG_MOVE_TIME - log_ulong("_MOVE_TIME - This move took", micros()-startmove); - #endif - - if(DISABLE_X) disable_x(); - if(DISABLE_Y) disable_y(); - if(DISABLE_Z) disable_z(); - if(DISABLE_E) disable_e(); - - // Update current position partly based on direction, we probably can combine this with the direction code above... - for(int i=0; i < NUM_AXIS; i++) { - if (destination[i] > current_position[i]) current_position[i] = current_position[i] + move_steps_to_take[i] / axis_steps_per_unit[i]; - else current_position[i] = current_position[i] - move_steps_to_take[i] / axis_steps_per_unit[i]; - } -} - -inline void do_step_update_micros(int axis) { - digitalWrite(STEP_PIN[axis], HIGH); - axis_previous_micros[axis] += interval; - digitalWrite(STEP_PIN[axis], LOW); -} - -inline void do_step(int axis) { - digitalWrite(STEP_PIN[axis], HIGH); - digitalWrite(STEP_PIN[axis], LOW); -} - -inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); } -inline void disable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN,!Y_ENABLE_ON); } -inline void disable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN,!Z_ENABLE_ON); } -inline void disable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN,!E_ENABLE_ON); } -inline void enable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN, X_ENABLE_ON); } -inline void enable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN, Y_ENABLE_ON); } -inline void enable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN, Z_ENABLE_ON); } -inline void enable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN, E_ENABLE_ON); } - -#define HEAT_INTERVAL 250 -#ifdef HEATER_USES_MAX6675 -unsigned long max6675_previous_millis = 0; -int max6675_temp = 2000; - -inline int read_max6675() -{ - if (millis() - max6675_previous_millis < HEAT_INTERVAL) - return max6675_temp; - - max6675_previous_millis = millis(); - - max6675_temp = 0; - - #ifdef PRR - PRR &= ~(1<<PRSPI); - #elif defined PRR0 - PRR0 &= ~(1<<PRSPI); - #endif - - SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); - - // enable TT_MAX6675 - digitalWrite(MAX6675_SS, 0); - - // ensure 100ns delay - a bit extra is fine - delay(1); - - // read MSB - SPDR = 0; - for (;(SPSR & (1<<SPIF)) == 0;); - max6675_temp = SPDR; - max6675_temp <<= 8; - - // read LSB - SPDR = 0; - for (;(SPSR & (1<<SPIF)) == 0;); - max6675_temp |= SPDR; - - // disable TT_MAX6675 - digitalWrite(MAX6675_SS, 1); - - if (max6675_temp & 4) - { - // thermocouple open - max6675_temp = 2000; - } - else - { - max6675_temp = max6675_temp >> 3; - } - - return max6675_temp; -} -#endif - - -inline void manage_heater() -{ - if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL ) - return; - previous_millis_heater = millis(); - #ifdef HEATER_USES_THERMISTOR - current_raw = analogRead(TEMP_0_PIN); - #ifdef DEBUG_HEAT_MGMT - log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw); - log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS); - #endif - // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, - // this switches it up so that the reading appears lower than target for the control logic. - current_raw = 1023 - current_raw; - #elif defined HEATER_USES_AD595 - current_raw = analogRead(TEMP_0_PIN); - #elif defined HEATER_USES_MAX6675 - current_raw = read_max6675(); - #endif - #ifdef SMOOTHING - nma = (nma + current_raw) - (nma / SMOOTHFACTOR); - current_raw = nma / SMOOTHFACTOR; - #endif - #ifdef WATCHPERIOD - if(watchmillis && millis() - watchmillis > WATCHPERIOD){ - if(watch_raw + 1 >= current_raw){ - target_raw = 0; - digitalWrite(HEATER_0_PIN,LOW); - digitalWrite(LED_PIN,LOW); - }else{ - watchmillis = 0; - } - } - #endif - #ifdef MINTEMP - if(current_raw <= minttemp) - target_raw = 0; - #endif - #ifdef MAXTEMP - if(current_raw >= maxttemp) { - target_raw = 0; - } - #endif - #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX66675) - #ifdef PIDTEMP - error = target_raw - current_raw; - pTerm = (PID_PGAIN * error) / 100; - temp_iState += error; - temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max); - iTerm = (PID_IGAIN * temp_iState) / 100; - dTerm = (PID_DGAIN * (current_raw - temp_dState)) / 100; - temp_dState = current_raw; - analogWrite(HEATER_0_PIN, constrain(pTerm + iTerm - dTerm, 0, PID_MAX)); - #else - if(current_raw >= target_raw) - { - digitalWrite(HEATER_0_PIN,LOW); - digitalWrite(LED_PIN,LOW); - } - else - { - digitalWrite(HEATER_0_PIN,HIGH); - digitalWrite(LED_PIN,HIGH); - } - #endif - #endif - - if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) - return; - previous_millis_bed_heater = millis(); - - #ifdef BED_USES_THERMISTOR - - current_bed_raw = analogRead(TEMP_1_PIN); - #ifdef DEBUG_HEAT_MGMT - log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw); - log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS); - #endif - - // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, - // this switches it up so that the reading appears lower than target for the control logic. - current_bed_raw = 1023 - current_bed_raw; - #elif defined BED_USES_AD595 - current_bed_raw = analogRead(TEMP_1_PIN); - - #endif - - - #if TEMP_1_PIN > -1 - if(current_bed_raw >= target_bed_raw) - { - digitalWrite(HEATER_1_PIN,LOW); - } - else - { - digitalWrite(HEATER_1_PIN,HIGH); - } - #endif -} - -// Takes hot end temperature value as input and returns corresponding raw value. -// For a thermistor, it uses the RepRap thermistor temp table. -// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value. -// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware. -float temp2analog(int celsius) { - #ifdef HEATER_USES_THERMISTOR - int raw = 0; - byte i; - - for (i=1; i<NUMTEMPS; i++) - { - if (temptable[i][1] < celsius) - { - raw = temptable[i-1][0] + - (celsius - temptable[i-1][1]) * - (temptable[i][0] - temptable[i-1][0]) / - (temptable[i][1] - temptable[i-1][1]); - - break; - } - } - - // Overflow: Set to last value in the table - if (i == NUMTEMPS) raw = temptable[i-1][0]; - - return 1023 - raw; - #elif defined HEATER_USES_AD595 - return celsius * (1024.0 / (5.0 * 100.0) ); - #elif defined HEATER_USES_MAX6675 - return celsius * 4.0; - #endif -} - -// Takes bed temperature value as input and returns corresponding raw value. -// For a thermistor, it uses the RepRap thermistor temp table. -// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value. -// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware. -float temp2analogBed(int celsius) { - #ifdef BED_USES_THERMISTOR - - int raw = 0; - byte i; - - for (i=1; i<BNUMTEMPS; i++) - { - if (bedtemptable[i][1] < celsius) - { - raw = bedtemptable[i-1][0] + - (celsius - bedtemptable[i-1][1]) * - (bedtemptable[i][0] - bedtemptable[i-1][0]) / - (bedtemptable[i][1] - bedtemptable[i-1][1]); - - break; - } - } - - // Overflow: Set to last value in the table - if (i == BNUMTEMPS) raw = bedtemptable[i-1][0]; - - return 1023 - raw; - #elif defined BED_USES_AD595 - return celsius * (1024.0 / (5.0 * 100.0) ); - #endif -} - -// Derived from RepRap FiveD extruder::getTemperature() -// For hot end temperature measurement. -float analog2temp(int raw) { - #ifdef HEATER_USES_THERMISTOR - int celsius = 0; - byte i; - - raw = 1023 - raw; - - for (i=1; i<NUMTEMPS; i++) - { - if (temptable[i][0] > raw) - { - celsius = temptable[i-1][1] + - (raw - temptable[i-1][0]) * - (temptable[i][1] - temptable[i-1][1]) / - (temptable[i][0] - temptable[i-1][0]); - - break; - } - } - - // Overflow: Set to last value in the table - if (i == NUMTEMPS) celsius = temptable[i-1][1]; - - return celsius; - #elif defined HEATER_USES_AD595 - return raw * ((5.0 * 100.0) / 1024.0); - #elif defined HEATER_USES_MAX6675 - return raw * 0.25; - #endif -} - -// Derived from RepRap FiveD extruder::getTemperature() -// For bed temperature measurement. -float analog2tempBed(int raw) { - #ifdef BED_USES_THERMISTOR - int celsius = 0; - byte i; - - raw = 1023 - raw; - - for (i=1; i<NUMTEMPS; i++) - { - if (bedtemptable[i][0] > raw) - { - celsius = bedtemptable[i-1][1] + - (raw - bedtemptable[i-1][0]) * - (bedtemptable[i][1] - bedtemptable[i-1][1]) / - (bedtemptable[i][0] - bedtemptable[i-1][0]); - - break; - } - } - - // Overflow: Set to last value in the table - if (i == NUMTEMPS) celsius = bedtemptable[i-1][1]; - - return celsius; - - #elif defined BED_USES_AD595 - return raw * ((5.0 * 100.0) / 1024.0); - #endif -} - -inline void kill() -{ - #if TEMP_0_PIN > -1 - target_raw=0; - digitalWrite(HEATER_0_PIN,LOW); - #endif - #if TEMP_1_PIN > -1 - target_bed_raw=0; - if(HEATER_1_PIN > -1) digitalWrite(HEATER_1_PIN,LOW); - #endif - disable_x(); - disable_y(); - disable_z(); - disable_e(); - - if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); - -} - -inline void manage_inactivity(byte debug) { -if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); -if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); } -} - -#ifdef DEBUG -void log_message(char* message) { - Serial.print("DEBUG"); Serial.println(message); -} - -void log_bool(char* message, bool value) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); -} - -void log_int(char* message, int value) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); -} - -void log_long(char* message, long value) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); -} - -void log_float(char* message, float value) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); -} - -void log_uint(char* message, unsigned int value) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); -} - -void log_ulong(char* message, unsigned long value) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value); -} - -void log_int_array(char* message, int value[], int array_lenght) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); - for(int i=0; i < array_lenght; i++){ - Serial.print(value[i]); - if(i != array_lenght-1) Serial.print(", "); - } - Serial.println("}"); -} - -void log_long_array(char* message, long value[], int array_lenght) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); - for(int i=0; i < array_lenght; i++){ - Serial.print(value[i]); - if(i != array_lenght-1) Serial.print(", "); - } - Serial.println("}"); -} - -void log_float_array(char* message, float value[], int array_lenght) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); - for(int i=0; i < array_lenght; i++){ - Serial.print(value[i]); - if(i != array_lenght-1) Serial.print(", "); - } - Serial.println("}"); -} - -void log_uint_array(char* message, unsigned int value[], int array_lenght) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); - for(int i=0; i < array_lenght; i++){ - Serial.print(value[i]); - if(i != array_lenght-1) Serial.print(", "); - } - Serial.println("}"); -} - -void log_ulong_array(char* message, unsigned long value[], int array_lenght) { - Serial.print("DEBUG"); Serial.print(message); Serial.print(": {"); - for(int i=0; i < array_lenght; i++){ - Serial.print(value[i]); - if(i != array_lenght-1) Serial.print(", "); - } - Serial.println("}"); -} -#endif |