summaryrefslogtreecommitdiff
path: root/Sprinter/Sprinter.pde
diff options
context:
space:
mode:
Diffstat (limited to 'Sprinter/Sprinter.pde')
-rw-r--r--Sprinter/Sprinter.pde1548
1 files changed, 1548 insertions, 0 deletions
diff --git a/Sprinter/Sprinter.pde b/Sprinter/Sprinter.pde
new file mode 100644
index 0000000..4528324
--- /dev/null
+++ b/Sprinter/Sprinter.pde
@@ -0,0 +1,1548 @@
+// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
+// Licence: GPL
+
+#include "Tonokip_Firmware.h"
+#include "configuration.h"
+#include "pins.h"
+
+#ifdef SDSUPPORT
+#include "SdFat.h"
+#endif
+
+// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+// G0 -> G1
+// G1 - Coordinated Movement X Y Z E
+// G4 - Dwell S<seconds> or P<milliseconds>
+// G28 - Home all Axis
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to cordinates given
+
+//RepRap M Codes
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Wait for extruder current temp to reach target temp.
+// M114 - Display current position
+
+//Custom M Codes
+// M80 - Turn on Power Supply
+// M20 - List SD card
+// M21 - Init SD card
+// M22 - Release SD card
+// M23 - Select SD file (M23 filename.g)
+// M24 - Start/resume SD print
+// M25 - Pause SD print
+// M26 - Set SD position in bytes (M26 S12345)
+// M27 - Report SD print status
+// M28 - Start SD write (M28 filename.g)
+// M29 - Stop SD write
+// M81 - Turn off Power Supply
+// M82 - Set E codes absolute (default)
+// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84 - Disable steppers until next move,
+// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
+// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
+// M92 - Set axis_steps_per_unit - same syntax as G92
+// M115 - Capabilities string
+// M140 - Set bed target temp
+// M190 - Wait for bed current temp to reach target temp.
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
+
+
+//Stepper Movement Variables
+char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
+bool move_direction[NUM_AXIS];
+const int STEP_PIN[NUM_AXIS] = {X_STEP_PIN, Y_STEP_PIN, Z_STEP_PIN, E_STEP_PIN};
+unsigned long axis_previous_micros[NUM_AXIS];
+unsigned long previous_micros = 0, previous_millis_heater, previous_millis_bed_heater;
+unsigned long move_steps_to_take[NUM_AXIS];
+#ifdef RAMP_ACCELERATION
+ unsigned long axis_max_interval[] = {100000000.0 / (max_start_speed_units_per_second[0] * axis_steps_per_unit[0]),
+ 100000000.0 / (max_start_speed_units_per_second[1] * axis_steps_per_unit[1]),
+ 100000000.0 / (max_start_speed_units_per_second[2] * axis_steps_per_unit[2]),
+ 100000000.0 / (max_start_speed_units_per_second[3] * axis_steps_per_unit[3])}; //TODO: refactor all things like this in a function, or move to setup()
+ // in a for loop
+ unsigned long max_interval;
+ unsigned long axis_steps_per_sqr_second[] = {max_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0],
+ max_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2],
+ max_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]};
+ unsigned long axis_travel_steps_per_sqr_second[] = {max_travel_acceleration_units_per_sq_second[0] * axis_steps_per_unit[0],
+ max_travel_acceleration_units_per_sq_second[1] * axis_steps_per_unit[1], max_travel_acceleration_units_per_sq_second[2] * axis_steps_per_unit[2],
+ max_travel_acceleration_units_per_sq_second[3] * axis_steps_per_unit[3]};
+ unsigned long steps_per_sqr_second, plateau_steps;
+#endif
+boolean acceleration_enabled = false, accelerating = false;
+unsigned long interval;
+float destination[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
+float current_position[NUM_AXIS] = {0.0, 0.0, 0.0, 0.0};
+long axis_interval[NUM_AXIS]; // for speed delay
+bool home_all_axis = true;
+float feedrate = 1500, next_feedrate, saved_feedrate;
+float time_for_move;
+long gcode_N, gcode_LastN;
+bool relative_mode = false; //Determines Absolute or Relative Coordinates
+bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
+long timediff = 0;
+//experimental feedrate calc
+float d = 0;
+float axis_diff[NUM_AXIS] = {0, 0, 0, 0};
+#ifdef STEP_DELAY_RATIO
+ long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
+#endif
+
+
+// comm variables
+#define MAX_CMD_SIZE 96
+#define BUFSIZE 8
+char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
+bool fromsd[BUFSIZE];
+int bufindr = 0;
+int bufindw = 0;
+int buflen = 0;
+int i = 0;
+char serial_char;
+int serial_count = 0;
+boolean comment_mode = false;
+char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
+
+// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the
+// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25
+// degree increments (i.e. 100=25 deg).
+
+int target_raw = 0;
+int current_raw = 0;
+int target_bed_raw = 0;
+int current_bed_raw = 0;
+float tt = 0, bt = 0;
+#ifdef PIDTEMP
+ int temp_iState = 0;
+ int temp_dState = 0;
+ int pTerm;
+ int iTerm;
+ int dTerm;
+ //int output;
+ int error;
+ int temp_iState_min = 100 * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
+ int temp_iState_max = 100 * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
+#endif
+#ifdef SMOOTHING
+ uint32_t nma = SMOOTHFACTOR * analogRead(TEMP_0_PIN);
+#endif
+#ifdef WATCHPERIOD
+ int watch_raw = -1000;
+ unsigned long watchmillis = 0;
+#endif
+#ifdef MINTEMP
+ int minttemp = temp2analog(MINTEMP);
+#endif
+#ifdef MAXTEMP
+int maxttemp = temp2analog(MAXTEMP);
+#endif
+
+//Inactivity shutdown variables
+unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+unsigned long stepper_inactive_time = 0;
+
+#ifdef SDSUPPORT
+ Sd2Card card;
+ SdVolume volume;
+ SdFile root;
+ SdFile file;
+ uint32_t filesize = 0;
+ uint32_t sdpos = 0;
+ bool sdmode = false;
+ bool sdactive = false;
+ bool savetosd = false;
+ int16_t n;
+
+ void initsd(){
+ sdactive = false;
+ #if SDSS >- 1
+ if(root.isOpen())
+ root.close();
+ if (!card.init(SPI_FULL_SPEED,SDSS)){
+ //if (!card.init(SPI_HALF_SPEED,SDSS))
+ Serial.println("SD init fail");
+ }
+ else if (!volume.init(&card))
+ Serial.println("volume.init failed");
+ else if (!root.openRoot(&volume))
+ Serial.println("openRoot failed");
+ else
+ sdactive = true;
+ #endif
+ }
+
+ inline void write_command(char *buf){
+ char* begin = buf;
+ char* npos = 0;
+ char* end = buf + strlen(buf) - 1;
+
+ file.writeError = false;
+ if((npos = strchr(buf, 'N')) != NULL){
+ begin = strchr(npos, ' ') + 1;
+ end = strchr(npos, '*') - 1;
+ }
+ end[1] = '\r';
+ end[2] = '\n';
+ end[3] = '\0';
+ //Serial.println(begin);
+ file.write(begin);
+ if (file.writeError){
+ Serial.println("error writing to file");
+ }
+ }
+#endif
+
+
+void setup()
+{
+ Serial.begin(BAUDRATE);
+ Serial.println("start");
+ for(int i = 0; i < BUFSIZE; i++){
+ fromsd[i] = false;
+ }
+
+ //Initialize Step Pins
+ for(int i=0; i < NUM_AXIS; i++) if(STEP_PIN[i] > -1) pinMode(STEP_PIN[i],OUTPUT);
+
+ //Initialize Dir Pins
+ if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT);
+ if(Y_DIR_PIN > -1) pinMode(Y_DIR_PIN,OUTPUT);
+ if(Z_DIR_PIN > -1) pinMode(Z_DIR_PIN,OUTPUT);
+ if(E_DIR_PIN > -1) pinMode(E_DIR_PIN,OUTPUT);
+
+ //Steppers default to disabled.
+ if(X_ENABLE_PIN > -1) if(!X_ENABLE_ON) digitalWrite(X_ENABLE_PIN,HIGH);
+ if(Y_ENABLE_PIN > -1) if(!Y_ENABLE_ON) digitalWrite(Y_ENABLE_PIN,HIGH);
+ if(Z_ENABLE_PIN > -1) if(!Z_ENABLE_ON) digitalWrite(Z_ENABLE_PIN,HIGH);
+ if(E_ENABLE_PIN > -1) if(!E_ENABLE_ON) digitalWrite(E_ENABLE_PIN,HIGH);
+
+ //endstop pullups
+ #ifdef ENDSTOPPULLUPS
+ if(X_MIN_PIN > -1) { pinMode(X_MIN_PIN,INPUT); digitalWrite(X_MIN_PIN,HIGH);}
+ if(Y_MIN_PIN > -1) { pinMode(Y_MIN_PIN,INPUT); digitalWrite(Y_MIN_PIN,HIGH);}
+ if(Z_MIN_PIN > -1) { pinMode(Z_MIN_PIN,INPUT); digitalWrite(Z_MIN_PIN,HIGH);}
+ if(X_MAX_PIN > -1) { pinMode(X_MAX_PIN,INPUT); digitalWrite(X_MAX_PIN,HIGH);}
+ if(Y_MAX_PIN > -1) { pinMode(Y_MAX_PIN,INPUT); digitalWrite(Y_MAX_PIN,HIGH);}
+ if(Z_MAX_PIN > -1) { pinMode(Z_MAX_PIN,INPUT); digitalWrite(Z_MAX_PIN,HIGH);}
+ #endif
+ //Initialize Enable Pins
+ if(X_ENABLE_PIN > -1) pinMode(X_ENABLE_PIN,OUTPUT);
+ if(Y_ENABLE_PIN > -1) pinMode(Y_ENABLE_PIN,OUTPUT);
+ if(Z_ENABLE_PIN > -1) pinMode(Z_ENABLE_PIN,OUTPUT);
+ if(E_ENABLE_PIN > -1) pinMode(E_ENABLE_PIN,OUTPUT);
+
+ if(HEATER_0_PIN > -1) pinMode(HEATER_0_PIN,OUTPUT);
+ if(HEATER_1_PIN > -1) pinMode(HEATER_1_PIN,OUTPUT);
+
+#ifdef HEATER_USES_MAX6675
+ digitalWrite(SCK_PIN,0);
+ pinMode(SCK_PIN,OUTPUT);
+
+ digitalWrite(MOSI_PIN,1);
+ pinMode(MOSI_PIN,OUTPUT);
+
+ digitalWrite(MISO_PIN,1);
+ pinMode(MISO_PIN,INPUT);
+
+ digitalWrite(MAX6675_SS,1);
+ pinMode(MAX6675_SS,OUTPUT);
+#endif
+
+#ifdef SDSUPPORT
+
+ //power to SD reader
+ #if SDPOWER > -1
+ pinMode(SDPOWER,OUTPUT);
+ digitalWrite(SDPOWER,HIGH);
+ #endif
+ initsd();
+
+#endif
+
+}
+
+
+void loop()
+{
+ if(buflen<3)
+ get_command();
+
+ if(buflen){
+#ifdef SDSUPPORT
+ if(savetosd){
+ if(strstr(cmdbuffer[bufindr],"M29") == NULL){
+ write_command(cmdbuffer[bufindr]);
+ Serial.println("ok");
+ }else{
+ file.sync();
+ file.close();
+ savetosd = false;
+ Serial.println("Done saving file.");
+ }
+ }else{
+ process_commands();
+ }
+#else
+ process_commands();
+#endif
+ buflen = (buflen-1);
+ bufindr = (bufindr + 1)%BUFSIZE;
+ }
+ //check heater every n milliseconds
+ manage_heater();
+ manage_inactivity(1);
+ }
+
+
+inline void get_command()
+{
+ while( Serial.available() > 0 && buflen < BUFSIZE) {
+ serial_char = Serial.read();
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
+ {
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode){
+ fromsd[bufindw] = false;
+ if(strstr(cmdbuffer[bufindw], "N") != NULL)
+ {
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
+ gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
+ if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
+ Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
+ Serial.println(gcode_LastN);
+ //Serial.println(gcode_N);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+
+ if(strstr(cmdbuffer[bufindw], "*") != NULL)
+ {
+ byte checksum = 0;
+ byte count = 0;
+ while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
+ strchr_pointer = strchr(cmdbuffer[bufindw], '*');
+
+ if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
+ Serial.print("Error: checksum mismatch, Last Line:");
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+ //if no errors, continue parsing
+ }
+ else
+ {
+ Serial.print("Error: No Checksum with line number, Last Line:");
+ Serial.println(gcode_LastN);
+ FlushSerialRequestResend();
+ serial_count = 0;
+ return;
+ }
+
+ gcode_LastN = gcode_N;
+ //if no errors, continue parsing
+ }
+ else // if we don't receive 'N' but still see '*'
+ {
+ if((strstr(cmdbuffer[bufindw], "*") != NULL))
+ {
+ Serial.print("Error: No Line Number with checksum, Last Line:");
+ Serial.println(gcode_LastN);
+ serial_count = 0;
+ return;
+ }
+ }
+ if((strstr(cmdbuffer[bufindw], "G") != NULL)){
+ strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
+ switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
+ case 0:
+ case 1:
+ #ifdef SDSUPPORT
+ if(savetosd)
+ break;
+ #endif
+ Serial.println("ok");
+ break;
+ default:
+ break;
+ }
+
+ }
+ bufindw = (bufindw + 1)%BUFSIZE;
+ buflen += 1;
+
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
+ }
+ else
+ {
+ if(serial_char == ';') comment_mode = true;
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+ }
+ }
+#ifdef SDSUPPORT
+if(!sdmode || serial_count!=0){
+ return;
+}
+ while( filesize > sdpos && buflen < BUFSIZE) {
+ n = file.read();
+ serial_char = (char)n;
+ if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
+ {
+ sdpos = file.curPosition();
+ if(sdpos >= filesize){
+ sdmode = false;
+ Serial.println("Done printing file");
+ }
+ if(!serial_count) return; //if empty line
+ cmdbuffer[bufindw][serial_count] = 0; //terminate string
+ if(!comment_mode){
+ fromsd[bufindw] = true;
+ buflen += 1;
+ bufindw = (bufindw + 1)%BUFSIZE;
+ }
+ comment_mode = false; //for new command
+ serial_count = 0; //clear buffer
+ }
+ else
+ {
+ if(serial_char == ';') comment_mode = true;
+ if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+ }
+}
+#endif
+
+}
+
+
+inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
+inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
+inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found
+
+inline bool code_seen(char code)
+{
+ strchr_pointer = strchr(cmdbuffer[bufindr], code);
+ return (strchr_pointer != NULL); //Return True if a character was found
+}
+
+inline void process_commands()
+{
+ unsigned long codenum; //throw away variable
+ char *starpos = NULL;
+
+ if(code_seen('G'))
+ {
+ switch((int)code_value())
+ {
+ case 0: // G0 -> G1
+ case 1: // G1
+ #ifdef DISABLE_CHECK_DURING_ACC || DISABLE_CHECK_DURING_MOVE || DISABLE_CHECK_DURING_TRAVEL
+ manage_heater();
+ #endif
+ get_coordinates(); // For X Y Z E F
+ prepare_move();
+ previous_millis_cmd = millis();
+ //ClearToSend();
+ return;
+ //break;
+ case 4: // G4 dwell
+ codenum = 0;
+ if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+ if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+ codenum += millis(); // keep track of when we started waiting
+ while(millis() < codenum ){
+ manage_heater();
+ }
+ break;
+ case 28: //G28 Home all Axis one at a time
+ saved_feedrate = feedrate;
+ for(int i=0; i < NUM_AXIS; i++) {
+ destination[i] = 0;
+ current_position[i] = 0;
+ }
+ feedrate = 0;
+
+ home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
+
+ if((home_all_axis) || (code_seen('X'))) {
+ if((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) {
+ current_position[0] = 0;
+ destination[0] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
+ feedrate = max_start_speed_units_per_second[0] * 60;
+ prepare_move();
+
+ current_position[0] = 0;
+ destination[0] = -1 * X_HOME_DIR;
+ prepare_move();
+
+ destination[0] = 10 * X_HOME_DIR;
+ prepare_move();
+
+ current_position[0] = 0;
+ destination[0] = 0;
+ feedrate = 0;
+ }
+ }
+
+ if((home_all_axis) || (code_seen('X'))) {
+ if((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) {
+ current_position[1] = 0;
+ destination[1] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+ feedrate = max_start_speed_units_per_second[1] * 60;
+ prepare_move();
+
+ current_position[1] = 0;
+ destination[1] = -1 * Y_HOME_DIR;
+ prepare_move();
+
+ destination[1] = 10 * Y_HOME_DIR;
+ prepare_move();
+
+ current_position[1] = 0;
+ destination[1] = 0;
+ feedrate = 0;
+ }
+ }
+
+ if((home_all_axis) || (code_seen('X'))) {
+ if((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) {
+ current_position[2] = 0;
+ destination[2] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+ feedrate = max_feedrate[2]/2;
+ prepare_move();
+
+ current_position[2] = 0;
+ destination[2] = -1 * Z_HOME_DIR;
+ prepare_move();
+
+ destination[2] = 10 * Z_HOME_DIR;
+ prepare_move();
+
+ current_position[2] = 0;
+ destination[2] = 0;
+ feedrate = 0;
+ }
+ }
+
+ feedrate = saved_feedrate;
+ previous_millis_cmd = millis();
+ break;
+ case 90: // G90
+ relative_mode = false;
+ break;
+ case 91: // G91
+ relative_mode = true;
+ break;
+ case 92: // G92
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) current_position[i] = code_value();
+ }
+ break;
+
+ }
+ }
+
+ else if(code_seen('M'))
+ {
+
+ switch( (int)code_value() )
+ {
+#ifdef SDSUPPORT
+
+ case 20: // M20 - list SD card
+ Serial.println("Begin file list");
+ root.ls();
+ Serial.println("End file list");
+ break;
+ case 21: // M21 - init SD card
+ sdmode = false;
+ initsd();
+ break;
+ case 22: //M22 - release SD card
+ sdmode = false;
+ sdactive = false;
+ break;
+ case 23: //M23 - Select file
+ if(sdactive){
+ sdmode = false;
+ file.close();
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos!=NULL)
+ *(starpos-1)='\0';
+ if (file.open(&root, strchr_pointer + 4, O_READ)) {
+ Serial.print("File opened:");
+ Serial.print(strchr_pointer + 4);
+ Serial.print(" Size:");
+ Serial.println(file.fileSize());
+ sdpos = 0;
+ filesize = file.fileSize();
+ Serial.println("File selected");
+ }
+ else{
+ Serial.println("file.open failed");
+ }
+ }
+ break;
+ case 24: //M24 - Start SD print
+ if(sdactive){
+ sdmode = true;
+ }
+ break;
+ case 25: //M25 - Pause SD print
+ if(sdmode){
+ sdmode = false;
+ }
+ break;
+ case 26: //M26 - Set SD index
+ if(sdactive && code_seen('S')){
+ sdpos = code_value_long();
+ file.seekSet(sdpos);
+ }
+ break;
+ case 27: //M27 - Get SD status
+ if(sdactive){
+ Serial.print("SD printing byte ");
+ Serial.print(sdpos);
+ Serial.print("/");
+ Serial.println(filesize);
+ }else{
+ Serial.println("Not SD printing");
+ }
+ break;
+ case 28: //M28 - Start SD write
+ if(sdactive){
+ char* npos = 0;
+ file.close();
+ sdmode = false;
+ starpos = (strchr(strchr_pointer + 4,'*'));
+ if(starpos != NULL){
+ npos = strchr(cmdbuffer[bufindr], 'N');
+ strchr_pointer = strchr(npos,' ') + 1;
+ *(starpos-1) = '\0';
+ }
+ if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+ {
+ Serial.print("open failed, File: ");
+ Serial.print(strchr_pointer + 4);
+ Serial.print(".");
+ }else{
+ savetosd = true;
+ Serial.print("Writing to file: ");
+ Serial.println(strchr_pointer + 4);
+ }
+ }
+ break;
+ case 29: //M29 - Stop SD write
+ //processed in write to file routine above
+ //savetosd = false;
+ break;
+#endif
+ case 104: // M104
+ if (code_seen('S')) target_raw = temp2analog(code_value());
+ #ifdef WATCHPERIOD
+ if(target_raw > current_raw){
+ watchmillis = max(1,millis());
+ watch_raw = current_raw;
+ }else{
+ watchmillis = 0;
+ }
+ #endif
+ break;
+ case 140: // M140 set bed temp
+ if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
+ break;
+ case 105: // M105
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)
+ tt = analog2temp(current_raw);
+ #endif
+ #if TEMP_1_PIN > -1
+ bt = analog2tempBed(current_bed_raw);
+ #endif
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)
+ Serial.print("ok T:");
+ Serial.print(tt);
+ #if TEMP_1_PIN > -1
+ Serial.print(" B:");
+ Serial.println(bt);
+ #else
+ Serial.println();
+ #endif
+ #else
+ Serial.println("No thermistors - no temp");
+ #endif
+ return;
+ //break;
+ case 109: // M109 - Wait for extruder heater to reach target.
+ if (code_seen('S')) target_raw = temp2analog(code_value());
+ #ifdef WATCHPERIOD
+ if(target_raw>current_raw){
+ watchmillis = max(1,millis());
+ watch_raw = current_raw;
+ }else{
+ watchmillis = 0;
+ }
+ #endif
+ codenum = millis();
+ while(current_raw < target_raw) {
+ if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ Serial.print("T:");
+ Serial.println( analog2temp(current_raw) );
+ codenum = millis();
+ }
+ manage_heater();
+ }
+ break;
+ case 190: // M190 - Wait bed for heater to reach target.
+ #if TEMP_1_PIN > -1
+ if (code_seen('S')) target_bed_raw = temp2analog(code_value());
+ codenum = millis();
+ while(current_bed_raw < target_bed_raw) {
+ if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+ {
+ tt=analog2temp(current_raw);
+ Serial.print("T:");
+ Serial.println( tt );
+ Serial.print("ok T:");
+ Serial.print( tt );
+ Serial.print(" B:");
+ Serial.println( analog2temp(current_bed_raw) );
+ codenum = millis();
+ }
+ manage_heater();
+ }
+ #endif
+ break;
+ case 106: //M106 Fan On
+ if (code_seen('S')){
+ digitalWrite(FAN_PIN, HIGH);
+ analogWrite(FAN_PIN, constrain(code_value(),0,255) );
+ }
+ else
+ digitalWrite(FAN_PIN, HIGH);
+ break;
+ case 107: //M107 Fan Off
+ analogWrite(FAN_PIN, 0);
+
+ digitalWrite(FAN_PIN, LOW);
+ break;
+ case 80: // M81 - ATX Power On
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND
+ break;
+ case 81: // M81 - ATX Power Off
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
+ break;
+ case 82:
+ axis_relative_modes[3] = false;
+ break;
+ case 83:
+ axis_relative_modes[3] = true;
+ break;
+ case 84:
+ if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; }
+ else{ disable_x(); disable_y(); disable_z(); disable_e(); }
+ break;
+ case 85: // M85
+ code_seen('S');
+ max_inactive_time = code_value() * 1000;
+ break;
+ case 92: // M92
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
+ }
+
+ //Update start speed intervals and axis order. TODO: refactor axis_max_interval[] calculation into a function, as it
+ // should also be used in setup() as well
+ #ifdef RAMP_ACCELERATION
+ long temp_max_intervals[NUM_AXIS];
+ for(int i=0; i < NUM_AXIS; i++) {
+ axis_max_interval[i] = 100000000.0 / (max_start_speed_units_per_second[i] * axis_steps_per_unit[i]);//TODO: do this for
+ // all steps_per_unit related variables
+ }
+ #endif
+ break;
+ case 115: // M115
+ Serial.println("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
+ break;
+ case 114: // M114
+ Serial.print("X:");
+ Serial.print(current_position[0]);
+ Serial.print("Y:");
+ Serial.print(current_position[1]);
+ Serial.print("Z:");
+ Serial.print(current_position[2]);
+ Serial.print("E:");
+ Serial.println(current_position[3]);
+ break;
+ #ifdef RAMP_ACCELERATION
+ //TODO: update for all axis, use for loop
+ case 201: // M201
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+ case 202: // M202
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+ }
+ break;
+ #endif
+ }
+
+ }
+ else{
+ Serial.println("Unknown command:");
+ Serial.println(cmdbuffer[bufindr]);
+ }
+
+ ClearToSend();
+
+}
+
+inline void FlushSerialRequestResend()
+{
+ //char cmdbuffer[bufindr][100]="Resend:";
+ Serial.flush();
+ Serial.print("Resend:");
+ Serial.println(gcode_LastN + 1);
+ ClearToSend();
+}
+
+inline void ClearToSend()
+{
+ previous_millis_cmd = millis();
+ #ifdef SDSUPPORT
+ if(fromsd[bufindr])
+ return;
+ #endif
+ Serial.println("ok");
+}
+
+inline void get_coordinates()
+{
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+ else destination[i] = current_position[i]; //Are these else lines really needed?
+ }
+ if(code_seen('F')) {
+ next_feedrate = code_value();
+ if(next_feedrate > 0.0) feedrate = next_feedrate;
+ }
+}
+
+inline void prepare_move()
+{
+ //Find direction
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(destination[i] >= current_position[i]) move_direction[i] = 1;
+ else move_direction[i] = 0;
+ }
+
+
+ if (min_software_endstops) {
+ if (destination[0] < 0) destination[0] = 0.0;
+ if (destination[1] < 0) destination[1] = 0.0;
+ if (destination[2] < 0) destination[2] = 0.0;
+ }
+
+ if (max_software_endstops) {
+ if (destination[0] > X_MAX_LENGTH) destination[0] = X_MAX_LENGTH;
+ if (destination[1] > Y_MAX_LENGTH) destination[1] = Y_MAX_LENGTH;
+ if (destination[2] > Z_MAX_LENGTH) destination[2] = Z_MAX_LENGTH;
+ }
+
+ for(int i=0; i < NUM_AXIS; i++) {
+ axis_diff[i] = destination[i] - current_position[i];
+ move_steps_to_take[i] = abs(axis_diff[i]) * axis_steps_per_unit[i];
+ }
+ if(feedrate < 10)
+ feedrate = 10;
+
+ //Feedrate calc based on XYZ travel distance
+ float xy_d;
+ if(abs(axis_diff[0]) > 0 || abs(axis_diff[1]) > 0 || abs(axis_diff[2])) {
+ xy_d = sqrt(axis_diff[0] * axis_diff[0] + axis_diff[1] * axis_diff[1]);
+ d = sqrt(xy_d * xy_d + axis_diff[2] * axis_diff[2]);
+ }
+ else if(abs(axis_diff[3]) > 0)
+ d = abs(axis_diff[3]);
+ #ifdef DEBUG_PREPARE_MOVE
+ else {
+ log_message("_PREPARE_MOVE - No steps to take!");
+ }
+ #endif
+ time_for_move = (d / (feedrate / 60000000.0) );
+ //Check max feedrate for each axis is not violated, update time_for_move if necessary
+ for(int i = 0; i < NUM_AXIS; i++) {
+ if(move_steps_to_take[i] && abs(axis_diff[i]) / (time_for_move / 60000000.0) > max_feedrate[i]) {
+ time_for_move = time_for_move / max_feedrate[i] * (abs(axis_diff[i]) / (time_for_move / 60000000.0));
+ }
+ }
+ //Calculate the full speed stepper interval for each axis
+ for(int i=0; i < NUM_AXIS; i++) {
+ if(move_steps_to_take[i]) axis_interval[i] = time_for_move / move_steps_to_take[i] * 100;
+ }
+
+ #ifdef DEBUG_PREPARE_MOVE
+ log_float("_PREPARE_MOVE - Move distance on the XY plane", xy_d);
+ log_float("_PREPARE_MOVE - Move distance on the XYZ space", d);
+ log_float("_PREPARE_MOVE - Commanded feedrate", feedrate);
+ log_float("_PREPARE_MOVE - Constant full speed move time", time_for_move);
+ log_float_array("_PREPARE_MOVE - Destination", destination, NUM_AXIS);
+ log_float_array("_PREPARE_MOVE - Current position", current_position, NUM_AXIS);
+ log_ulong_array("_PREPARE_MOVE - Steps to take", move_steps_to_take, NUM_AXIS);
+ log_long_array("_PREPARE_MOVE - Axes full speed intervals", axis_interval, NUM_AXIS);
+ #endif
+
+ unsigned long move_steps[NUM_AXIS];
+ for(int i=0; i < NUM_AXIS; i++)
+ move_steps[i] = move_steps_to_take[i];
+ linear_move(move_steps); // make the move
+}
+
+void linear_move(unsigned long axis_steps_remaining[]) // make linear move with preset speeds and destinations, see G0 and G1
+{
+ //Determine direction of movement
+ if (destination[0] > current_position[0]) digitalWrite(X_DIR_PIN,!INVERT_X_DIR);
+ else digitalWrite(X_DIR_PIN,INVERT_X_DIR);
+ if (destination[1] > current_position[1]) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR);
+ else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR);
+ if (destination[2] > current_position[2]) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR);
+ else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR);
+ if (destination[3] > current_position[3]) digitalWrite(E_DIR_PIN,!INVERT_E_DIR);
+ else digitalWrite(E_DIR_PIN,INVERT_E_DIR);
+
+ if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0;
+ if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0;
+ if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0;
+ if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[0]=0;
+ if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[1]=0;
+ if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) axis_steps_remaining[2]=0;
+
+
+ //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
+ // TODO: maybe it's better to refactor into a generic enable(int axis) function, that will probably take more ram,
+ // but will reduce code size
+ if(axis_steps_remaining[0]) enable_x();
+ if(axis_steps_remaining[1]) enable_y();
+ if(axis_steps_remaining[2]) enable_z();
+ if(axis_steps_remaining[3]) enable_e();
+
+ //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm.
+ unsigned long delta[] = {axis_steps_remaining[0], axis_steps_remaining[1], axis_steps_remaining[2], axis_steps_remaining[3]}; //TODO: implement a "for" to support N axes
+ long axis_error[NUM_AXIS];
+ unsigned int primary_axis;
+ if(delta[1] > delta[0] && delta[1] > delta[2] && delta[1] > delta[3]) primary_axis = 1;
+ else if (delta[0] >= delta[1] && delta[0] > delta[2] && delta[0] > delta[3]) primary_axis = 0;
+ else if (delta[2] >= delta[0] && delta[2] >= delta[1] && delta[2] > delta[3]) primary_axis = 2;
+ else primary_axis = 3;
+ unsigned long steps_remaining = delta[primary_axis];
+ unsigned long steps_to_take = steps_remaining;
+ for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis) axis_error[i] = delta[primary_axis] / 2;
+ interval = axis_interval[primary_axis];
+ bool is_print_move = delta[3] > 0;
+ #ifdef DEBUG_BRESENHAM
+ log_int("_BRESENHAM - Primary axis", primary_axis);
+ log_int("_BRESENHAM - Primary axis full speed interval", interval);
+ log_ulong_array("_BRESENHAM - Deltas", delta, NUM_AXIS);
+ log_long_array("_BRESENHAM - Errors", axis_error, NUM_AXIS);
+ #endif
+
+ //If acceleration is enabled, do some Bresenham calculations depending on which axis will lead it.
+ #ifdef RAMP_ACCELERATION
+ long max_speed_steps_per_second;
+ long min_speed_steps_per_second;
+ max_interval = axis_max_interval[primary_axis];
+ #ifdef DEBUG_RAMP_ACCELERATION
+ log_ulong_array("_RAMP_ACCELERATION - Teoric step intervals at move start", axis_max_interval, NUM_AXIS);
+ #endif
+ unsigned long new_axis_max_intervals[NUM_AXIS];
+ max_speed_steps_per_second = 100000000 / interval;
+ min_speed_steps_per_second = 100000000 / max_interval; //TODO: can this be deleted?
+ //Calculate start speeds based on moving axes max start speed constraints.
+ int slowest_start_axis = primary_axis;
+ unsigned long slowest_start_axis_max_interval = max_interval;
+ for(int i = 0; i < NUM_AXIS; i++)
+ if (axis_steps_remaining[i] >0 && i != primary_axis && axis_max_interval[i] * axis_steps_remaining[i]
+ / axis_steps_remaining[slowest_start_axis] > slowest_start_axis_max_interval) {
+ slowest_start_axis = i;
+ slowest_start_axis_max_interval = axis_max_interval[i];
+ }
+ for(int i = 0; i < NUM_AXIS; i++)
+ if(axis_steps_remaining[i] >0) {
+ new_axis_max_intervals[i] = slowest_start_axis_max_interval * axis_steps_remaining[slowest_start_axis] / axis_steps_remaining[i];
+ if(i == primary_axis) {
+ max_interval = new_axis_max_intervals[i];
+ min_speed_steps_per_second = 100000000 / max_interval;
+ }
+ }
+ //Calculate slowest axis plateau time
+ float slowest_axis_plateau_time = 0;
+ for(int i=0; i < NUM_AXIS ; i++) {
+ if(axis_steps_remaining[i] > 0) {
+ if(is_print_move && axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
+ (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_steps_per_sqr_second[i]);
+ else if(axis_steps_remaining[i] > 0) slowest_axis_plateau_time = max(slowest_axis_plateau_time,
+ (100000000.0 / axis_interval[i] - 100000000.0 / new_axis_max_intervals[i]) / (float) axis_travel_steps_per_sqr_second[i]);
+ }
+ }
+ //Now we can calculate the new primary axis acceleration, so that the slowest axis max acceleration is not violated
+ steps_per_sqr_second = (100000000.0 / axis_interval[primary_axis] - 100000000.0 / new_axis_max_intervals[primary_axis]) / slowest_axis_plateau_time;
+ plateau_steps = (long) ((steps_per_sqr_second / 2.0 * slowest_axis_plateau_time + min_speed_steps_per_second) * slowest_axis_plateau_time);
+ #ifdef DEBUG_RAMP_ACCELERATION
+ log_int("_RAMP_ACCELERATION - Start speed limiting axis", slowest_start_axis);
+ log_ulong("_RAMP_ACCELERATION - Limiting axis start interval", slowest_start_axis_max_interval);
+ log_ulong_array("_RAMP_ACCELERATION - Actual step intervals at move start", new_axis_max_intervals, NUM_AXIS);
+ #endif
+ #endif
+
+ unsigned long steps_done = 0;
+ #ifdef RAMP_ACCELERATION
+ plateau_steps *= 1.01; // This is to compensate we use discrete intervals
+ acceleration_enabled = true;
+ long full_interval = interval;
+ if(interval > max_interval) acceleration_enabled = false;
+ boolean decelerating = false;
+ #endif
+
+ unsigned long start_move_micros = micros();
+ for(int i = 0; i < NUM_AXIS; i++) {
+ axis_previous_micros[i] = start_move_micros * 100;
+ }
+
+ #ifdef DISABLE_CHECK_DURING_TRAVEL
+ //If the move time is more than allowed in DISABLE_CHECK_DURING_TRAVEL, let's
+ // consider this a print move and perform heat management during it
+ if(time_for_move / 1000 > DISABLE_CHECK_DURING_TRAVEL) is_print_move = true;
+ //else, if the move is a retract, consider it as a travel move for the sake of this feature
+ else if(delta[3]>0 && delta[0] + delta[1] + delta[2] == 0) is_print_move = false;
+ #ifdef DEBUG_DISABLE_CHECK_DURING_TRAVEL
+ log_bool("_DISABLE_CHECK_DURING_TRAVEL - is_print_move", is_print_move);
+ #endif
+ #endif
+
+ #ifdef DEBUG_MOVE_TIME
+ unsigned long startmove = micros();
+ #endif
+
+ //move until no more steps remain
+ while(axis_steps_remaining[0] + axis_steps_remaining[1] + axis_steps_remaining[2] + axis_steps_remaining[3] > 0) {
+ #ifdef DISABLE_CHECK_DURING_ACC
+ if(!accelerating && !decelerating) {
+ //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
+ #ifdef DISABLE_CHECK_DURING_TRAVEL
+ if(is_print_move)
+ #endif
+ manage_heater();
+ }
+ #else
+ #ifdef DISABLE_CHECK_DURING_MOVE
+ {} //Do nothing
+ #else
+ //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
+ #ifdef DISABLE_CHECK_DURING_TRAVEL
+ if(is_print_move)
+ #endif
+ manage_heater();
+ #endif
+ #endif
+ #ifdef RAMP_ACCELERATION
+ //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
+ if (acceleration_enabled && steps_done == 0) {
+ interval = max_interval;
+ } else if (acceleration_enabled && steps_done <= plateau_steps) {
+ long current_speed = (long) ((((long) steps_per_sqr_second) / 10000)
+ * ((micros() - start_move_micros) / 100) + (long) min_speed_steps_per_second);
+ interval = 100000000 / current_speed;
+ if (interval < full_interval) {
+ accelerating = false;
+ interval = full_interval;
+ }
+ if (steps_done >= steps_to_take / 2) {
+ plateau_steps = steps_done;
+ max_speed_steps_per_second = 100000000 / interval;
+ accelerating = false;
+ }
+ } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) {
+ if (!accelerating) {
+ start_move_micros = micros();
+ accelerating = true;
+ decelerating = true;
+ }
+ long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 10000)
+ * ((micros() - start_move_micros) / 100)));
+ interval = 100000000 / current_speed;
+ if (interval > max_interval)
+ interval = max_interval;
+ } else {
+ //Else, we are just use the full speed interval as current interval
+ interval = full_interval;
+ accelerating = false;
+ }
+ #endif
+
+ //If there are x or y steps remaining, perform Bresenham algorithm
+ if(axis_steps_remaining[primary_axis]) {
+ if(X_MIN_PIN > -1) if(!move_direction[0]) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break;
+ if(Y_MIN_PIN > -1) if(!move_direction[1]) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break;
+ if(X_MAX_PIN > -1) if(move_direction[0]) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break;
+ if(Y_MAX_PIN > -1) if(move_direction[1]) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break;
+ if(Z_MIN_PIN > -1) if(!move_direction[2]) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break;
+ if(Z_MAX_PIN > -1) if(move_direction[2]) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break;
+ timediff = micros() * 100 - axis_previous_micros[primary_axis];
+ while(timediff >= interval && axis_steps_remaining[primary_axis] > 0) {
+ steps_done++;
+ steps_remaining--;
+ axis_steps_remaining[primary_axis]--; timediff -= interval;
+ do_step_update_micros(primary_axis);
+ for(int i=0; i < NUM_AXIS; i++) if(i != primary_axis && axis_steps_remaining[i] > 0) {
+ axis_error[i] = axis_error[i] - delta[i];
+ if(axis_error[i] < 0) {
+ do_step(i); axis_steps_remaining[i]--;
+ axis_error[i] = axis_error[i] + delta[primary_axis];
+ }
+ }
+ #ifdef STEP_DELAY_RATIO
+ if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
+ #endif
+ #ifdef STEP_DELAY_MICROS
+ if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
+ #endif
+ }
+ }
+ }
+ #ifdef DEBUG_MOVE_TIME
+ log_ulong("_MOVE_TIME - This move took", micros()-startmove);
+ #endif
+
+ if(DISABLE_X) disable_x();
+ if(DISABLE_Y) disable_y();
+ if(DISABLE_Z) disable_z();
+ if(DISABLE_E) disable_e();
+
+ // Update current position partly based on direction, we probably can combine this with the direction code above...
+ for(int i=0; i < NUM_AXIS; i++) {
+ if (destination[i] > current_position[i]) current_position[i] = current_position[i] + move_steps_to_take[i] / axis_steps_per_unit[i];
+ else current_position[i] = current_position[i] - move_steps_to_take[i] / axis_steps_per_unit[i];
+ }
+}
+
+inline void do_step_update_micros(int axis) {
+ digitalWrite(STEP_PIN[axis], HIGH);
+ axis_previous_micros[axis] += interval;
+ digitalWrite(STEP_PIN[axis], LOW);
+}
+
+inline void do_step(int axis) {
+ digitalWrite(STEP_PIN[axis], HIGH);
+ digitalWrite(STEP_PIN[axis], LOW);
+}
+
+inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); }
+inline void disable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN,!Y_ENABLE_ON); }
+inline void disable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN,!Z_ENABLE_ON); }
+inline void disable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN,!E_ENABLE_ON); }
+inline void enable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN, X_ENABLE_ON); }
+inline void enable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN, Y_ENABLE_ON); }
+inline void enable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN, Z_ENABLE_ON); }
+inline void enable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN, E_ENABLE_ON); }
+
+#define HEAT_INTERVAL 250
+#ifdef HEATER_USES_MAX6675
+unsigned long max6675_previous_millis = 0;
+int max6675_temp = 2000;
+
+inline int read_max6675()
+{
+ if (millis() - max6675_previous_millis < HEAT_INTERVAL)
+ return max6675_temp;
+
+ max6675_previous_millis = millis();
+
+ max6675_temp = 0;
+
+ #ifdef PRR
+ PRR &= ~(1<<PRSPI);
+ #elif defined PRR0
+ PRR0 &= ~(1<<PRSPI);
+ #endif
+
+ SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
+
+ // enable TT_MAX6675
+ digitalWrite(MAX6675_SS, 0);
+
+ // ensure 100ns delay - a bit extra is fine
+ delay(1);
+
+ // read MSB
+ SPDR = 0;
+ for (;(SPSR & (1<<SPIF)) == 0;);
+ max6675_temp = SPDR;
+ max6675_temp <<= 8;
+
+ // read LSB
+ SPDR = 0;
+ for (;(SPSR & (1<<SPIF)) == 0;);
+ max6675_temp |= SPDR;
+
+ // disable TT_MAX6675
+ digitalWrite(MAX6675_SS, 1);
+
+ if (max6675_temp & 4)
+ {
+ // thermocouple open
+ max6675_temp = 2000;
+ }
+ else
+ {
+ max6675_temp = max6675_temp >> 3;
+ }
+
+ return max6675_temp;
+}
+#endif
+
+
+inline void manage_heater()
+{
+ if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
+ return;
+ previous_millis_heater = millis();
+ #ifdef HEATER_USES_THERMISTOR
+ current_raw = analogRead(TEMP_0_PIN);
+ #ifdef DEBUG_HEAT_MGMT
+ log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
+ log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
+ #endif
+ // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
+ // this switches it up so that the reading appears lower than target for the control logic.
+ current_raw = 1023 - current_raw;
+ #elif defined HEATER_USES_AD595
+ current_raw = analogRead(TEMP_0_PIN);
+ #elif defined HEATER_USES_MAX6675
+ current_raw = read_max6675();
+ #endif
+ #ifdef SMOOTHING
+ nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
+ current_raw = nma / SMOOTHFACTOR;
+ #endif
+ #ifdef WATCHPERIOD
+ if(watchmillis && millis() - watchmillis > WATCHPERIOD){
+ if(watch_raw + 1 >= current_raw){
+ target_raw = 0;
+ digitalWrite(HEATER_0_PIN,LOW);
+ digitalWrite(LED_PIN,LOW);
+ }else{
+ watchmillis = 0;
+ }
+ }
+ #endif
+ #ifdef MINTEMP
+ if(current_raw <= minttemp)
+ target_raw = 0;
+ #endif
+ #ifdef MAXTEMP
+ if(current_raw >= maxttemp) {
+ target_raw = 0;
+ }
+ #endif
+ #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX66675)
+ #ifdef PIDTEMP
+ error = target_raw - current_raw;
+ pTerm = (PID_PGAIN * error) / 100;
+ temp_iState += error;
+ temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
+ iTerm = (PID_IGAIN * temp_iState) / 100;
+ dTerm = (PID_DGAIN * (current_raw - temp_dState)) / 100;
+ temp_dState = current_raw;
+ analogWrite(HEATER_0_PIN, constrain(pTerm + iTerm - dTerm, 0, PID_MAX));
+ #else
+ if(current_raw >= target_raw)
+ {
+ digitalWrite(HEATER_0_PIN,LOW);
+ digitalWrite(LED_PIN,LOW);
+ }
+ else
+ {
+ digitalWrite(HEATER_0_PIN,HIGH);
+ digitalWrite(LED_PIN,HIGH);
+ }
+ #endif
+ #endif
+
+ if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
+ return;
+ previous_millis_bed_heater = millis();
+
+ #ifdef BED_USES_THERMISTOR
+
+ current_bed_raw = analogRead(TEMP_1_PIN);
+ #ifdef DEBUG_HEAT_MGMT
+ log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
+ log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
+ #endif
+
+ // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
+ // this switches it up so that the reading appears lower than target for the control logic.
+ current_bed_raw = 1023 - current_bed_raw;
+ #elif defined BED_USES_AD595
+ current_bed_raw = analogRead(TEMP_1_PIN);
+
+ #endif
+
+
+ #if TEMP_1_PIN > -1
+ if(current_bed_raw >= target_bed_raw)
+ {
+ digitalWrite(HEATER_1_PIN,LOW);
+ }
+ else
+ {
+ digitalWrite(HEATER_1_PIN,HIGH);
+ }
+ #endif
+}
+
+// Takes hot end temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+float temp2analog(int celsius) {
+ #ifdef HEATER_USES_THERMISTOR
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<NUMTEMPS; i++)
+ {
+ if (temptable[i][1] < celsius)
+ {
+ raw = temptable[i-1][0] +
+ (celsius - temptable[i-1][1]) *
+ (temptable[i][0] - temptable[i-1][0]) /
+ (temptable[i][1] - temptable[i-1][1]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS) raw = temptable[i-1][0];
+
+ return 1023 - raw;
+ #elif defined HEATER_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) );
+ #elif defined HEATER_USES_MAX6675
+ return celsius * 4.0;
+ #endif
+}
+
+// Takes bed temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+float temp2analogBed(int celsius) {
+ #ifdef BED_USES_THERMISTOR
+
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<BNUMTEMPS; i++)
+ {
+ if (bedtemptable[i][1] < celsius)
+ {
+ raw = bedtemptable[i-1][0] +
+ (celsius - bedtemptable[i-1][1]) *
+ (bedtemptable[i][0] - bedtemptable[i-1][0]) /
+ (bedtemptable[i][1] - bedtemptable[i-1][1]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
+
+ return 1023 - raw;
+ #elif defined BED_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) );
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For hot end temperature measurement.
+float analog2temp(int raw) {
+ #ifdef HEATER_USES_THERMISTOR
+ int celsius = 0;
+ byte i;
+
+ raw = 1023 - raw;
+
+ for (i=1; i<NUMTEMPS; i++)
+ {
+ if (temptable[i][0] > raw)
+ {
+ celsius = temptable[i-1][1] +
+ (raw - temptable[i-1][0]) *
+ (temptable[i][1] - temptable[i-1][1]) /
+ (temptable[i][0] - temptable[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS) celsius = temptable[i-1][1];
+
+ return celsius;
+ #elif defined HEATER_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0);
+ #elif defined HEATER_USES_MAX6675
+ return raw * 0.25;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For bed temperature measurement.
+float analog2tempBed(int raw) {
+ #ifdef BED_USES_THERMISTOR
+ int celsius = 0;
+ byte i;
+
+ raw = 1023 - raw;
+
+ for (i=1; i<NUMTEMPS; i++)
+ {
+ if (bedtemptable[i][0] > raw)
+ {
+ celsius = bedtemptable[i-1][1] +
+ (raw - bedtemptable[i-1][0]) *
+ (bedtemptable[i][1] - bedtemptable[i-1][1]) /
+ (bedtemptable[i][0] - bedtemptable[i-1][0]);
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS) celsius = bedtemptable[i-1][1];
+
+ return celsius;
+
+ #elif defined BED_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0);
+ #endif
+}
+
+inline void kill()
+{
+ #if TEMP_0_PIN > -1
+ target_raw=0;
+ digitalWrite(HEATER_0_PIN,LOW);
+ #endif
+ #if TEMP_1_PIN > -1
+ target_bed_raw=0;
+ if(HEATER_1_PIN > -1) digitalWrite(HEATER_1_PIN,LOW);
+ #endif
+ disable_x();
+ disable_y();
+ disable_z();
+ disable_e();
+
+ if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+
+}
+
+inline void manage_inactivity(byte debug) {
+if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
+if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); }
+}
+
+#ifdef DEBUG
+void log_message(char* message) {
+ Serial.print("DEBUG"); Serial.println(message);
+}
+
+void log_bool(char* message, bool value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_int(char* message, int value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_long(char* message, long value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_float(char* message, float value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_uint(char* message, unsigned int value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_ulong(char* message, unsigned long value) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": "); Serial.println(value);
+}
+
+void log_int_array(char* message, int value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_long_array(char* message, long value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_float_array(char* message, float value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_uint_array(char* message, unsigned int value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+
+void log_ulong_array(char* message, unsigned long value[], int array_lenght) {
+ Serial.print("DEBUG"); Serial.print(message); Serial.print(": {");
+ for(int i=0; i < array_lenght; i++){
+ Serial.print(value[i]);
+ if(i != array_lenght-1) Serial.print(", ");
+ }
+ Serial.println("}");
+}
+#endif