summaryrefslogtreecommitdiff
path: root/Tonokip_Firmware/Tonokip_Firmware.pde
diff options
context:
space:
mode:
Diffstat (limited to 'Tonokip_Firmware/Tonokip_Firmware.pde')
-rw-r--r--Tonokip_Firmware/Tonokip_Firmware.pde1618
1 files changed, 0 insertions, 1618 deletions
diff --git a/Tonokip_Firmware/Tonokip_Firmware.pde b/Tonokip_Firmware/Tonokip_Firmware.pde
deleted file mode 100644
index ff1b411..0000000
--- a/Tonokip_Firmware/Tonokip_Firmware.pde
+++ /dev/null
@@ -1,1618 +0,0 @@
-// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
-// Licence: GPL
-
-#include "Tonokip_Firmware.h"
-#include "configuration.h"
-#include "pins.h"
-
-#ifdef SDSUPPORT
-#include "SdFat.h"
-#endif
-
-// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-// G0 -> G1
-// G1 - Coordinated Movement X Y Z E
-// G4 - Dwell S<seconds> or P<milliseconds>
-// G28 - Home all Axis
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to cordinates given
-
-//RepRap M Codes
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Wait for extruder current temp to reach target temp.
-// M114 - Display current position
-
-//Custom M Codes
-// M80 - Turn on Power Supply
-// M20 - List SD card
-// M21 - Init SD card
-// M22 - Release SD card
-// M23 - Select SD file (M23 filename.g)
-// M24 - Start/resume SD print
-// M25 - Pause SD print
-// M26 - Set SD position in bytes (M26 S12345)
-// M27 - Report SD print status
-// M28 - Start SD write (M28 filename.g)
-// M29 - Stop SD write
-// M81 - Turn off Power Supply
-// M82 - Set E codes absolute (default)
-// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84 - Disable steppers until next move,
-// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
-// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
-// M92 - Set axis_steps_per_unit - same syntax as G92
-// M115 - Capabilities string
-// M140 - Set bed target temp
-// M190 - Wait for bed current temp to reach target temp.
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
-
-
-//Stepper Movement Variables
-bool direction_x, direction_y, direction_z, direction_e;
-unsigned long previous_micros = 0, previous_micros_x = 0, previous_micros_y = 0, previous_micros_z = 0, previous_micros_e = 0, previous_millis_heater, previous_millis_bed_heater;
-unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take;
-#ifdef RAMP_ACCELERATION
- unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit);
- unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit);
- unsigned long max_interval;
- unsigned long x_steps_per_sqr_second = max_acceleration_units_per_sq_second * x_steps_per_unit;
- unsigned long y_steps_per_sqr_second = max_acceleration_units_per_sq_second * y_steps_per_unit;
- unsigned long x_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * x_steps_per_unit;
- unsigned long y_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * y_steps_per_unit;
- unsigned long steps_per_sqr_second, plateau_steps;
-#endif
-#ifdef EXP_ACCELERATION
- unsigned long long_full_velocity_units = full_velocity_units * 100;
- unsigned long long_travel_move_full_velocity_units = travel_move_full_velocity_units * 100;
- unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit);
- unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit);
- unsigned long max_interval;
- unsigned long x_min_constant_speed_steps = min_constant_speed_units * x_steps_per_unit,
- y_min_constant_speed_steps = min_constant_speed_units * y_steps_per_unit, min_constant_speed_steps;
-#endif
-boolean acceleration_enabled = false, accelerating = false;
-unsigned long interval;
-float destination_x = 0.0, destination_y = 0.0, destination_z = 0.0, destination_e = 0.0;
-float current_x = 0.0, current_y = 0.0, current_z = 0.0, current_e = 0.0;
-long x_interval, y_interval, z_interval, e_interval; // for speed delay
-float feedrate = 1500, next_feedrate, z_feedrate, saved_feedrate;
-bool home_all_axis = true;
-float time_for_move;
-long gcode_N, gcode_LastN;
-bool relative_mode = false; //Determines Absolute or Relative Coordinates
-bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
-long timediff = 0;
-#ifdef STEP_DELAY_RATIO
- long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
-#endif
-
-
-// comm variables
-#define MAX_CMD_SIZE 96
-#define BUFSIZE 8
-char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
-bool fromsd[BUFSIZE];
-int bufindr = 0;
-int bufindw = 0;
-int buflen = 0;
-int i = 0;
-char serial_char;
-int serial_count = 0;
-boolean comment_mode = false;
-char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-
-// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the
-// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25
-// degree increments (i.e. 100=25 deg).
-
-int target_raw = 0;
-int current_raw = 0;
-int target_bed_raw = 0;
-int current_bed_raw = 0;
-float tt = 0, bt = 0;
-#ifdef PIDTEMP
- int temp_iState = 0;
- int temp_dState = 0;
- int pTerm;
- int iTerm;
- int dTerm;
- //int output;
- int error;
- int temp_iState_min = 100 * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
- int temp_iState_max = 100 * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
-#endif
-#ifdef SMOOTHING
- uint32_t nma = SMOOTHFACTOR * analogRead(TEMP_0_PIN);
-#endif
-#ifdef WATCHPERIOD
- int watch_raw = -1000;
- unsigned long watchmillis = 0;
-#endif
-#ifdef MINTEMP
- int minttemp = temp2analog(MINTEMP);
-#endif
-#ifdef MAXTEMP
-int maxttemp = temp2analog(MAXTEMP);
-#endif
-
-//Inactivity shutdown variables
-unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-unsigned long stepper_inactive_time = 0;
-
-#ifdef SDSUPPORT
- Sd2Card card;
- SdVolume volume;
- SdFile root;
- SdFile file;
- uint32_t filesize = 0;
- uint32_t sdpos = 0;
- bool sdmode = false;
- bool sdactive = false;
- bool savetosd = false;
- int16_t n;
-
- void initsd(){
- sdactive = false;
- #if SDSS >- 1
- if(root.isOpen())
- root.close();
- if (!card.init(SPI_FULL_SPEED,SDSS)){
- //if (!card.init(SPI_HALF_SPEED,SDSS))
- Serial.println("SD init fail");
- }
- else if (!volume.init(&card))
- Serial.println("volume.init failed");
- else if (!root.openRoot(&volume))
- Serial.println("openRoot failed");
- else
- sdactive = true;
- #endif
- }
-
- inline void write_command(char *buf){
- char* begin = buf;
- char* npos = 0;
- char* end = buf + strlen(buf) - 1;
-
- file.writeError = false;
- if((npos = strchr(buf, 'N')) != NULL){
- begin = strchr(npos, ' ') + 1;
- end = strchr(npos, '*') - 1;
- }
- end[1] = '\r';
- end[2] = '\n';
- end[3] = '\0';
- //Serial.println(begin);
- file.write(begin);
- if (file.writeError){
- Serial.println("error writing to file");
- }
- }
-#endif
-
-
-void setup()
-{
- Serial.begin(BAUDRATE);
- Serial.println("start");
- for(int i = 0; i < BUFSIZE; i++){
- fromsd[i] = false;
- }
- //Initialize Step Pins
- if(X_STEP_PIN > -1) pinMode(X_STEP_PIN,OUTPUT);
- if(Y_STEP_PIN > -1) pinMode(Y_STEP_PIN,OUTPUT);
- if(Z_STEP_PIN > -1) pinMode(Z_STEP_PIN,OUTPUT);
- if(E_STEP_PIN > -1) pinMode(E_STEP_PIN,OUTPUT);
-
- //Initialize Dir Pins
- if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT);
- if(Y_DIR_PIN > -1) pinMode(Y_DIR_PIN,OUTPUT);
- if(Z_DIR_PIN > -1) pinMode(Z_DIR_PIN,OUTPUT);
- if(E_DIR_PIN > -1) pinMode(E_DIR_PIN,OUTPUT);
-
- //Steppers default to disabled.
- if(X_ENABLE_PIN > -1) if(!X_ENABLE_ON) digitalWrite(X_ENABLE_PIN,HIGH);
- if(Y_ENABLE_PIN > -1) if(!Y_ENABLE_ON) digitalWrite(Y_ENABLE_PIN,HIGH);
- if(Z_ENABLE_PIN > -1) if(!Z_ENABLE_ON) digitalWrite(Z_ENABLE_PIN,HIGH);
- if(E_ENABLE_PIN > -1) if(!E_ENABLE_ON) digitalWrite(E_ENABLE_PIN,HIGH);
-
- //endstop pullups
- #ifdef ENDSTOPPULLUPS
- if(X_MIN_PIN > -1) { pinMode(X_MIN_PIN,INPUT); digitalWrite(X_MIN_PIN,HIGH);}
- if(Y_MIN_PIN > -1) { pinMode(Y_MIN_PIN,INPUT); digitalWrite(Y_MIN_PIN,HIGH);}
- if(Z_MIN_PIN > -1) { pinMode(Z_MIN_PIN,INPUT); digitalWrite(Z_MIN_PIN,HIGH);}
- if(X_MAX_PIN > -1) { pinMode(X_MAX_PIN,INPUT); digitalWrite(X_MAX_PIN,HIGH);}
- if(Y_MAX_PIN > -1) { pinMode(Y_MAX_PIN,INPUT); digitalWrite(Y_MAX_PIN,HIGH);}
- if(Z_MAX_PIN > -1) { pinMode(Z_MAX_PIN,INPUT); digitalWrite(Z_MAX_PIN,HIGH);}
- #endif
- //Initialize Enable Pins
- if(X_ENABLE_PIN > -1) pinMode(X_ENABLE_PIN,OUTPUT);
- if(Y_ENABLE_PIN > -1) pinMode(Y_ENABLE_PIN,OUTPUT);
- if(Z_ENABLE_PIN > -1) pinMode(Z_ENABLE_PIN,OUTPUT);
- if(E_ENABLE_PIN > -1) pinMode(E_ENABLE_PIN,OUTPUT);
-
- if(HEATER_0_PIN > -1) pinMode(HEATER_0_PIN,OUTPUT);
- if(HEATER_1_PIN > -1) pinMode(HEATER_1_PIN,OUTPUT);
-
-#ifdef HEATER_USES_MAX6675
- digitalWrite(SCK_PIN,0);
- pinMode(SCK_PIN,OUTPUT);
-
- digitalWrite(MOSI_PIN,1);
- pinMode(MOSI_PIN,OUTPUT);
-
- digitalWrite(MISO_PIN,1);
- pinMode(MISO_PIN,INPUT);
-
- digitalWrite(MAX6675_SS,1);
- pinMode(MAX6675_SS,OUTPUT);
-#endif
-
-#ifdef SDSUPPORT
-
- //power to SD reader
- #if SDPOWER > -1
- pinMode(SDPOWER,OUTPUT);
- digitalWrite(SDPOWER,HIGH);
- #endif
- initsd();
-
-#endif
-}
-
-
-void loop()
-{
- if(buflen<3)
- get_command();
-
- if(buflen){
-#ifdef SDSUPPORT
- if(savetosd){
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){
- write_command(cmdbuffer[bufindr]);
- Serial.println("ok");
- }else{
- file.sync();
- file.close();
- savetosd = false;
- Serial.println("Done saving file.");
- }
- }else{
- process_commands();
- }
-#else
- process_commands();
-#endif
- buflen = (buflen-1);
- bufindr = (bufindr + 1)%BUFSIZE;
- }
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
- }
-
-
-inline void get_command()
-{
- while( Serial.available() > 0 && buflen < BUFSIZE) {
- serial_char = Serial.read();
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
- {
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
- Serial.print("Error: checksum mismatch, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- Serial.print("Error: No Checksum with line number, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- Serial.print("Error: No Line Number with checksum, Last Line:");
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
- case 0:
- case 1:
- #ifdef SDSUPPORT
- if(savetosd)
- break;
- #endif
- Serial.println("ok");
- break;
- default:
- break;
- }
-
- }
- bufindw = (bufindw + 1)%BUFSIZE;
- buflen += 1;
-
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
-#ifdef SDSUPPORT
-if(!sdmode || serial_count!=0){
- return;
-}
- while( filesize > sdpos && buflen < BUFSIZE) {
- n = file.read();
- serial_char = (char)n;
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
- {
- sdpos = file.curPosition();
- if(sdpos >= filesize){
- sdmode = false;
- Serial.println("Done printing file");
- }
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = true;
- buflen += 1;
- bufindw = (bufindw + 1)%BUFSIZE;
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
-}
-#endif
-
-}
-
-
-inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
-inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
-inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); } //Return True if the string was found
-
-inline bool code_seen(char code)
-{
- strchr_pointer = strchr(cmdbuffer[bufindr], code);
- return (strchr_pointer != NULL); //Return True if a character was found
-}
- //experimental feedrate calc
-float d = 0;
-float xdiff = 0, ydiff = 0, zdiff = 0, ediff = 0;
-
-inline void process_commands()
-{
- unsigned long codenum; //throw away variable
- char *starpos = NULL;
-
- if(code_seen('G'))
- {
- switch((int)code_value())
- {
- case 0: // G0 -> G1
- case 1: // G1
- get_coordinates(); // For X Y Z E F
- prepare_move();
- previous_millis_cmd = millis();
- //ClearToSend();
- return;
- //break;
- case 4: // G4 dwell
- codenum = 0;
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
- codenum += millis(); // keep track of when we started waiting
- while(millis() < codenum ){
- manage_heater();
- }
- break;
- case 28: //G28 Home all Axis one at a time
- saved_feedrate = feedrate;
- destination_x = 0;
- current_x = 0;
- destination_y = 0;
- current_y = 0;
- destination_z = 0;
- current_z = 0;
- destination_e = 0;
- current_e = 0;
- feedrate = 0;
-
- home_all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')));
-
- if((home_all_axis) || (code_seen('X'))) {
- if((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) {
- current_x = 0;
- destination_x = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
- feedrate = min_units_per_second * 60;
- prepare_move();
-
- current_x = 0;
- destination_x = -1 * X_HOME_DIR;
- prepare_move();
-
- destination_x = 10 * X_HOME_DIR;
- prepare_move();
-
- current_x = 0;
- destination_x = 0;
- feedrate = 0;
- }
- }
-
- if((home_all_axis) || (code_seen('Y'))) {
- if((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) {
- current_y = 0;
- destination_y = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- feedrate = min_units_per_second * 60;
- prepare_move();
-
- current_y = 0;
- destination_y = -1 * Y_HOME_DIR;
- prepare_move();
-
- destination_y = 10 * Y_HOME_DIR;
- prepare_move();
-
- current_y = 0;
- destination_y = 0;
- feedrate = 0;
- }
- }
-
- if((home_all_axis) || (code_seen('Z'))) {
- if((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) {
- current_z = 0;
- destination_z = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- feedrate = max_z_feedrate/2;
- prepare_move();
-
- current_z = 0;
- destination_z = -1 * Z_HOME_DIR;
- prepare_move();
-
- destination_z = 10 * Z_HOME_DIR;
- prepare_move();
-
- current_z = 0;
- destination_z = 0;
- feedrate = 0;
- }
- }
-
- feedrate = saved_feedrate;
- previous_millis_cmd = millis();
- break;
- case 90: // G90
- relative_mode = false;
- break;
- case 91: // G91
- relative_mode = true;
- break;
- case 92: // G92
- if(code_seen('X')) current_x = code_value();
- if(code_seen('Y')) current_y = code_value();
- if(code_seen('Z')) current_z = code_value();
- if(code_seen('E')) current_e = code_value();
- break;
-
- }
- }
-
- else if(code_seen('M'))
- {
-
- switch( (int)code_value() )
- {
-#ifdef SDSUPPORT
-
- case 20: // M20 - list SD card
- Serial.println("Begin file list");
- root.ls();
- Serial.println("End file list");
- break;
- case 21: // M21 - init SD card
- sdmode = false;
- initsd();
- break;
- case 22: //M22 - release SD card
- sdmode = false;
- sdactive = false;
- break;
- case 23: //M23 - Select file
- if(sdactive){
- sdmode = false;
- file.close();
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos!=NULL)
- *(starpos-1)='\0';
- if (file.open(&root, strchr_pointer + 4, O_READ)) {
- Serial.print("File opened:");
- Serial.print(strchr_pointer + 4);
- Serial.print(" Size:");
- Serial.println(file.fileSize());
- sdpos = 0;
- filesize = file.fileSize();
- Serial.println("File selected");
- }
- else{
- Serial.println("file.open failed");
- }
- }
- break;
- case 24: //M24 - Start SD print
- if(sdactive){
- sdmode = true;
- }
- break;
- case 25: //M25 - Pause SD print
- if(sdmode){
- sdmode = false;
- }
- break;
- case 26: //M26 - Set SD index
- if(sdactive && code_seen('S')){
- sdpos = code_value_long();
- file.seekSet(sdpos);
- }
- break;
- case 27: //M27 - Get SD status
- if(sdactive){
- Serial.print("SD printing byte ");
- Serial.print(sdpos);
- Serial.print("/");
- Serial.println(filesize);
- }else{
- Serial.println("Not SD printing");
- }
- break;
- case 28: //M28 - Start SD write
- if(sdactive){
- char* npos = 0;
- file.close();
- sdmode = false;
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
- npos = strchr(cmdbuffer[bufindr], 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos-1) = '\0';
- }
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
- {
- Serial.print("open failed, File: ");
- Serial.print(strchr_pointer + 4);
- Serial.print(".");
- }else{
- savetosd = true;
- Serial.print("Writing to file: ");
- Serial.println(strchr_pointer + 4);
- }
- }
- break;
- case 29: //M29 - Stop SD write
- //processed in write to file routine above
- //savetosd = false;
- break;
-#endif
- case 104: // M104
- if (code_seen('S')) target_raw = temp2analog(code_value());
- #ifdef WATCHPERIOD
- if(target_raw > current_raw){
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }else{
- watchmillis = 0;
- }
- #endif
- break;
- case 140: // M140 set bed temp
- if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
- break;
- case 105: // M105
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)
- tt = analog2temp(current_raw);
- #endif
- #if TEMP_1_PIN > -1
- bt = analog2tempBed(current_bed_raw);
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)
- Serial.print("ok T:");
- Serial.print(tt);
- #if TEMP_1_PIN > -1
- Serial.print(" B:");
- Serial.println(bt);
- #else
- Serial.println();
- #endif
- #else
- Serial.println("No thermistors - no temp");
- #endif
- return;
- //break;
- case 109: // M109 - Wait for extruder heater to reach target.
- if (code_seen('S')) target_raw = temp2analog(code_value());
- #ifdef WATCHPERIOD
- if(target_raw>current_raw){
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }else{
- watchmillis = 0;
- }
- #endif
- codenum = millis();
- while(current_raw < target_raw) {
- if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- Serial.print("T:");
- Serial.println( analog2temp(current_raw) );
- codenum = millis();
- }
- manage_heater();
- }
- break;
- case 190: // M190 - Wait bed for heater to reach target.
- #if TEMP_1_PIN > -1
- if (code_seen('S')) target_bed_raw = temp2analog(code_value());
- codenum = millis();
- while(current_bed_raw < target_bed_raw) {
- if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- tt=analog2temp(current_raw);
- Serial.print("T:");
- Serial.println( tt );
- Serial.print("ok T:");
- Serial.print( tt );
- Serial.print(" B:");
- Serial.println( analog2temp(current_bed_raw) );
- codenum = millis();
- }
- manage_heater();
- }
- #endif
- break;
- case 106: //M106 Fan On
- if (code_seen('S')){
- digitalWrite(FAN_PIN, HIGH);
- analogWrite(FAN_PIN, constrain(code_value(),0,255) );
- }
- else
- digitalWrite(FAN_PIN, HIGH);
- break;
- case 107: //M107 Fan Off
- analogWrite(FAN_PIN, 0);
-
- digitalWrite(FAN_PIN, LOW);
- break;
- case 80: // M81 - ATX Power On
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND
- break;
- case 81: // M81 - ATX Power Off
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
- break;
- case 82:
- relative_mode_e = false;
- break;
- case 83:
- relative_mode_e = true;
- break;
- case 84:
- if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; }
- else{ disable_x(); disable_y(); disable_z(); disable_e(); }
- break;
- case 85: // M85
- code_seen('S');
- max_inactive_time = code_value() * 1000;
- break;
- case 92: // M92
- if(code_seen('X')) x_steps_per_unit = code_value();
- if(code_seen('Y')) y_steps_per_unit = code_value();
- if(code_seen('Z')) z_steps_per_unit = code_value();
- if(code_seen('E')) e_steps_per_unit = code_value();
- break;
- case 115: // M115
- Serial.println("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
- break;
- case 114: // M114
- Serial.print("X:");
- Serial.print(current_x);
- Serial.print("Y:");
- Serial.print(current_y);
- Serial.print("Z:");
- Serial.print(current_z);
- Serial.print("E:");
- Serial.println(current_e);
- break;
- case 119: // M119
- #if (X_MIN_PIN > -1)
- Serial.print("x_min:");
- Serial.println((digitalRead(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H":"L");
- #endif
- #if (X_MAX_PIN > -1)
- Serial.print("x_max:");
- Serial.println((digitalRead(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H":"L");
- #endif
- #if (Y_MIN_PIN > -1)
- Serial.print("y_min:");
- Serial.println((digitalRead(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H":"L");
- #endif
- #if (Y_MAX_PIN > -1)
- Serial.print("y_max:");
- Serial.println((digitalRead(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H":"L");
- #endif
- #if (Z_MIN_PIN > -1)
- Serial.print("z_min:");
- Serial.println((digitalRead(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H":"L");
- #endif
- #if (Z_MAX_PIN > -1)
- Serial.print("z_max:");
- Serial.println((digitalRead(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H":"L");
- #endif
- break;
- #ifdef RAMP_ACCELERATION
- case 201: // M201
- if(code_seen('X')) x_steps_per_sqr_second = code_value() * x_steps_per_unit;
- if(code_seen('Y')) y_steps_per_sqr_second = code_value() * y_steps_per_unit;
- break;
- case 202: // M202
- if(code_seen('X')) x_travel_steps_per_sqr_second = code_value() * x_steps_per_unit;
- if(code_seen('Y')) y_travel_steps_per_sqr_second = code_value() * y_steps_per_unit;
- break;
- #endif
- }
-
- }
- else{
- Serial.println("Unknown command:");
- Serial.println(cmdbuffer[bufindr]);
- }
-
- ClearToSend();
-
-}
-
-inline void FlushSerialRequestResend()
-{
- //char cmdbuffer[bufindr][100]="Resend:";
- Serial.flush();
- Serial.print("Resend:");
- Serial.println(gcode_LastN + 1);
- ClearToSend();
-}
-
-inline void ClearToSend()
-{
- previous_millis_cmd = millis();
- #ifdef SDSUPPORT
- if(fromsd[bufindr])
- return;
- #endif
- Serial.println("ok");
-}
-
-inline void get_coordinates()
-{
- if(code_seen('X')) destination_x = (float)code_value() + relative_mode*current_x;
- else destination_x = current_x; //Are these else lines really needed?
- if(code_seen('Y')) destination_y = (float)code_value() + relative_mode*current_y;
- else destination_y = current_y;
- if(code_seen('Z')) destination_z = (float)code_value() + relative_mode*current_z;
- else destination_z = current_z;
- if(code_seen('E')) destination_e = (float)code_value() + (relative_mode_e || relative_mode)*current_e;
- else destination_e = current_e;
- if(code_seen('F')) {
- next_feedrate = code_value();
- if(next_feedrate > 0.0) feedrate = next_feedrate;
- }
-}
-
-inline void prepare_move()
-{
- //Find direction
- if(destination_x >= current_x) direction_x = 1;
- else direction_x = 0;
- if(destination_y >= current_y) direction_y = 1;
- else direction_y = 0;
- if(destination_z >= current_z) direction_z = 1;
- else direction_z = 0;
- if(destination_e >= current_e) direction_e = 1;
- else direction_e = 0;
-
-
- if (min_software_endstops) {
- if (destination_x < 0) destination_x = 0.0;
- if (destination_y < 0) destination_y = 0.0;
- if (destination_z < 0) destination_z = 0.0;
- }
-
- if (max_software_endstops) {
- if (destination_x > X_MAX_LENGTH) destination_x = X_MAX_LENGTH;
- if (destination_y > Y_MAX_LENGTH) destination_y = Y_MAX_LENGTH;
- if (destination_z > Z_MAX_LENGTH) destination_z = Z_MAX_LENGTH;
- }
-
- if(feedrate > max_feedrate) feedrate = max_feedrate;
-
- if(feedrate > max_z_feedrate) z_feedrate = max_z_feedrate;
- else z_feedrate = feedrate;
-
- xdiff = (destination_x - current_x);
- ydiff = (destination_y - current_y);
- zdiff = (destination_z - current_z);
- ediff = (destination_e - current_e);
- x_steps_to_take = abs(xdiff) * x_steps_per_unit;
- y_steps_to_take = abs(ydiff) * y_steps_per_unit;
- z_steps_to_take = abs(zdiff) * z_steps_per_unit;
- e_steps_to_take = abs(ediff) * e_steps_per_unit;
- if(feedrate < 10)
- feedrate = 10;
- /*
- //experimental feedrate calc
- if(abs(xdiff) > 0.1 && abs(ydiff) > 0.1)
- d = sqrt(xdiff * xdiff + ydiff * ydiff);
- else if(abs(xdiff) > 0.1)
- d = abs(xdiff);
- else if(abs(ydiff) > 0.1)
- d = abs(ydiff);
- else if(abs(zdiff) > 0.05)
- d = abs(zdiff);
- else if(abs(ediff) > 0.1)
- d = abs(ediff);
- else d = 1; //extremely slow move, should be okay for moves under 0.1mm
- time_for_move = (xdiff / (feedrate / 60000000) );
- //time = 60000000 * dist / feedrate
- //int feedz = (60000000 * zdiff) / time_for_move;
- //if(feedz > maxfeed)
- */
- #define X_TIME_FOR_MOVE ((float)x_steps_to_take / (x_steps_per_unit*feedrate/60000000))
- #define Y_TIME_FOR_MOVE ((float)y_steps_to_take / (y_steps_per_unit*feedrate/60000000))
- #define Z_TIME_FOR_MOVE ((float)z_steps_to_take / (z_steps_per_unit*z_feedrate/60000000))
- #define E_TIME_FOR_MOVE ((float)e_steps_to_take / (e_steps_per_unit*feedrate/60000000))
-
- time_for_move = max(X_TIME_FOR_MOVE, Y_TIME_FOR_MOVE);
- time_for_move = max(time_for_move, Z_TIME_FOR_MOVE);
- if(time_for_move <= 0) time_for_move = max(time_for_move, E_TIME_FOR_MOVE);
-
- if(x_steps_to_take) x_interval = time_for_move / x_steps_to_take * 100;
- if(y_steps_to_take) y_interval = time_for_move / y_steps_to_take * 100;
- if(z_steps_to_take) z_interval = time_for_move / z_steps_to_take * 100;
- if(e_steps_to_take && (x_steps_to_take + y_steps_to_take <= 0) ) e_interval = time_for_move / e_steps_to_take * 100;
-
- //#define DEBUGGING false
- #if 0
- if(0) {
- Serial.print("destination_x: "); Serial.println(destination_x);
- Serial.print("current_x: "); Serial.println(current_x);
- Serial.print("x_steps_to_take: "); Serial.println(x_steps_to_take);
- Serial.print("X_TIME_FOR_MVE: "); Serial.println(X_TIME_FOR_MOVE);
- Serial.print("x_interval: "); Serial.println(x_interval);
- Serial.println("");
- Serial.print("destination_y: "); Serial.println(destination_y);
- Serial.print("current_y: "); Serial.println(current_y);
- Serial.print("y_steps_to_take: "); Serial.println(y_steps_to_take);
- Serial.print("Y_TIME_FOR_MVE: "); Serial.println(Y_TIME_FOR_MOVE);
- Serial.print("y_interval: "); Serial.println(y_interval);
- Serial.println("");
- Serial.print("destination_z: "); Serial.println(destination_z);
- Serial.print("current_z: "); Serial.println(current_z);
- Serial.print("z_steps_to_take: "); Serial.println(z_steps_to_take);
- Serial.print("Z_TIME_FOR_MVE: "); Serial.println(Z_TIME_FOR_MOVE);
- Serial.print("z_interval: "); Serial.println(z_interval);
- Serial.println("");
- Serial.print("destination_e: "); Serial.println(destination_e);
- Serial.print("current_e: "); Serial.println(current_e);
- Serial.print("e_steps_to_take: "); Serial.println(e_steps_to_take);
- Serial.print("E_TIME_FOR_MVE: "); Serial.println(E_TIME_FOR_MOVE);
- Serial.print("e_interval: "); Serial.println(e_interval);
- Serial.println("");
- }
- #endif
-
- linear_move(x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take); // make the move
-}
-
-void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remaining, unsigned long z_steps_remaining, unsigned long e_steps_remaining) // make linear move with preset speeds and destinations, see G0 and G1
-{
- //Determine direction of movement
- if (destination_x > current_x) digitalWrite(X_DIR_PIN,!INVERT_X_DIR);
- else digitalWrite(X_DIR_PIN,INVERT_X_DIR);
- if (destination_y > current_y) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR);
- else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR);
- if (destination_z > current_z) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR);
- else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR);
- if (destination_e > current_e) digitalWrite(E_DIR_PIN,!INVERT_E_DIR);
- else digitalWrite(E_DIR_PIN,INVERT_E_DIR);
-
- if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
- if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
- if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
- if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
- if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
- if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
-
-
- //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
- if(x_steps_remaining) enable_x();
- if(y_steps_remaining) enable_y();
- if(z_steps_remaining) { enable_z(); do_z_step(); z_steps_remaining--; }
- if(e_steps_remaining) { enable_e(); do_e_step(); e_steps_remaining--; }
-
- //Define variables that are needed for the Bresenham algorithm. Please note that Z is not currently included in the Bresenham algorithm.
- unsigned int delta_x = x_steps_remaining;
- unsigned long x_interval_nanos;
- unsigned int delta_y = y_steps_remaining;
- unsigned long y_interval_nanos;
- unsigned int delta_z = z_steps_remaining;
- unsigned long z_interval_nanos;
- boolean steep_y = delta_y > delta_x;// && delta_y > delta_e && delta_y > delta_z;
- boolean steep_x = delta_x >= delta_y;// && delta_x > delta_e && delta_x > delta_z;
- //boolean steep_z = delta_z > delta_x && delta_z > delta_y && delta_z > delta_e;
- int error_x;
- int error_y;
- int error_z;
- #ifdef RAMP_ACCELERATION
- long max_speed_steps_per_second;
- long min_speed_steps_per_second;
- #endif
- #ifdef EXP_ACCELERATION
- unsigned long virtual_full_velocity_steps;
- unsigned long full_velocity_steps;
- #endif
- unsigned long steps_remaining;
- unsigned long steps_to_take;
-
- //Do some Bresenham calculations depending on which axis will lead it.
- if(steep_y) {
- error_x = delta_y / 2;
- interval = y_interval;
- #ifdef RAMP_ACCELERATION
- max_interval = max_y_interval;
- if(e_steps_to_take > 0) steps_per_sqr_second = y_steps_per_sqr_second;
- else steps_per_sqr_second = y_travel_steps_per_sqr_second;
- max_speed_steps_per_second = 100000000 / interval;
- min_speed_steps_per_second = 100000000 / max_interval;
- float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second;
- plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time);
- #endif
- #ifdef EXP_ACCELERATION
- if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * y_steps_per_unit /100;
- else virtual_full_velocity_steps = long_travel_move_full_velocity_units * y_steps_per_unit /100;
- full_velocity_steps = min(virtual_full_velocity_steps, (delta_y - y_min_constant_speed_steps) / 2);
- max_interval = max_y_interval;
- min_constant_speed_steps = y_min_constant_speed_steps;
- #endif
- steps_remaining = delta_y;
- steps_to_take = delta_y;
- } else if (steep_x) {
- error_y = delta_x / 2;
- interval = x_interval;
- #ifdef RAMP_ACCELERATION
- max_interval = max_x_interval;
- if(e_steps_to_take > 0) steps_per_sqr_second = x_steps_per_sqr_second;
- else steps_per_sqr_second = x_travel_steps_per_sqr_second;
- max_speed_steps_per_second = 100000000 / interval;
- min_speed_steps_per_second = 100000000 / max_interval;
- float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second;
- plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time);
- #endif
- #ifdef EXP_ACCELERATION
- if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * x_steps_per_unit /100;
- else virtual_full_velocity_steps = long_travel_move_full_velocity_units * x_steps_per_unit /100;
- full_velocity_steps = min(virtual_full_velocity_steps, (delta_x - x_min_constant_speed_steps) / 2);
- max_interval = max_x_interval;
- min_constant_speed_steps = x_min_constant_speed_steps;
- #endif
- steps_remaining = delta_x;
- steps_to_take = delta_x;
- }
- unsigned long steps_done = 0;
- #ifdef RAMP_ACCELERATION
- plateau_steps *= 1.01; // This is to compensate we use discrete intervals
- acceleration_enabled = true;
- long full_interval = interval;
- if(interval > max_interval) acceleration_enabled = false;
- boolean decelerating = false;
- #endif
- #ifdef EXP_ACCELERATION
- acceleration_enabled = true;
- if(full_velocity_steps == 0) full_velocity_steps++;
- if(interval > max_interval) acceleration_enabled = false;
- unsigned long full_interval = interval;
- if(min_constant_speed_steps >= steps_to_take) {
- acceleration_enabled = false;
- full_interval = max(max_interval, interval); // choose the min speed between feedrate and acceleration start speed
- }
- if(full_velocity_steps < virtual_full_velocity_steps && acceleration_enabled) full_interval = max(interval,
- max_interval - ((max_interval - full_interval) * full_velocity_steps / virtual_full_velocity_steps)); // choose the min speed between feedrate and speed at full steps
- unsigned int steps_acceleration_check = 1;
- accelerating = acceleration_enabled;
- #endif
-
- unsigned long start_move_micros = micros();
- previous_micros_x = start_move_micros*100;
- previous_micros_y = previous_micros_x;
- previous_micros_z = previous_micros_x;
- previous_micros_e = previous_micros_x;
-
- //move until no more steps remain
- while(x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) {
- //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
- manage_heater();
- manage_inactivity(2);
- #ifdef RAMP_ACCELERATION
- //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
- if (acceleration_enabled && steps_done == 0) {
- interval = max_interval;
- } else if (acceleration_enabled && steps_done <= plateau_steps) {
- long current_speed = (long) ((((long) steps_per_sqr_second) / 10000)
- * ((micros() - start_move_micros) / 100) + (long) min_speed_steps_per_second);
- interval = 100000000 / current_speed;
- if (interval < full_interval) {
- accelerating = false;
- interval = full_interval;
- }
- if (steps_done >= steps_to_take / 2) {
- plateau_steps = steps_done;
- max_speed_steps_per_second = 100000000 / interval;
- accelerating = false;
- }
- } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) {
- if (!accelerating) {
- start_move_micros = micros();
- accelerating = true;
- decelerating = true;
- }
- long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 10000)
- * ((micros() - start_move_micros) / 100)));
- interval = 100000000 / current_speed;
- if (interval > max_interval)
- interval = max_interval;
- } else {
- //Else, we are just use the full speed interval as current interval
- interval = full_interval;
- accelerating = false;
- }
- #endif
- #ifdef EXP_ACCELERATION
- //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
- if (acceleration_enabled && steps_done < full_velocity_steps && steps_done / full_velocity_steps < 1 && (steps_done % steps_acceleration_check == 0)) {
- if(steps_done == 0) {
- interval = max_interval;
- } else {
- interval = max_interval - ((max_interval - full_interval) * steps_done / virtual_full_velocity_steps);
- }
- } else if (acceleration_enabled && steps_remaining < full_velocity_steps) {
- //Else, if acceleration is enabled on this move and we are in the deceleration segment, calculate the current interval
- if(steps_remaining == 0) {
- interval = max_interval;
- } else {
- interval = max_interval - ((max_interval - full_interval) * steps_remaining / virtual_full_velocity_steps);
- }
- accelerating = true;
- } else if (steps_done - full_velocity_steps >= 1 || !acceleration_enabled){
- //Else, we are just use the full speed interval as current interval
- interval = full_interval;
- accelerating = false;
- }
- #endif
-
- //If there are x or y steps remaining, perform Bresenham algorithm
- if(x_steps_remaining || y_steps_remaining) {
- if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break;
- if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break;
- if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break;
- if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break;
- if(steep_y) {
- timediff = micros() * 100 - previous_micros_y;
- while(timediff >= interval && y_steps_remaining > 0) {
- steps_done++;
- steps_remaining--;
- y_steps_remaining--; timediff -= interval;
- error_x = error_x - delta_x;
- do_y_step();
- if(error_x < 0) {
- do_x_step(); x_steps_remaining--;
- error_x = error_x + delta_y;
- }
- #ifdef RAMP_ACCELERATION
- if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break;
- #endif
- #ifdef STEP_DELAY_RATIO
- if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- } else if (steep_x) {
- timediff=micros() * 100 - previous_micros_x;
- while(timediff >= interval && x_steps_remaining>0) {
- steps_done++;
- steps_remaining--;
- x_steps_remaining--; timediff -= interval;
- error_y = error_y - delta_y;
- do_x_step();
- if(error_y < 0) {
- do_y_step(); y_steps_remaining--;
- error_y = error_y + delta_x;
- }
- #ifdef RAMP_ACCELERATION
- if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break;
- #endif
- #ifdef STEP_DELAY_RATIO
- if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- }
- }
- #ifdef RAMP_ACCELERATION
- if((x_steps_remaining>0 || y_steps_remaining>0) &&
- steps_to_take > 0 &&
- (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating))) continue;
- #endif
-
- //If there are z steps remaining, check if z steps must be taken
- if(z_steps_remaining) {
- if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break;
- if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break;
- timediff = micros() * 100-previous_micros_z;
- while(timediff >= z_interval && z_steps_remaining) {
- do_z_step();
- z_steps_remaining--;
- timediff -= z_interval;
- #ifdef STEP_DELAY_RATIO
- if(timediff >= z_interval) delayMicroseconds(long_step_delay_ratio * z_interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= z_interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- }
-
- //If there are e steps remaining, check if e steps must be taken
- if(e_steps_remaining){
- if (x_steps_to_take + y_steps_to_take <= 0) timediff = micros()*100 - previous_micros_e;
- unsigned int final_e_steps_remaining = 0;
- if (steep_x && x_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * x_steps_remaining / x_steps_to_take;
- else if (steep_y && y_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * y_steps_remaining / y_steps_to_take;
- //If this move has X or Y steps, let E follow the Bresenham pace
- if (final_e_steps_remaining > 0) while(e_steps_remaining > final_e_steps_remaining) { do_e_step(); e_steps_remaining--;}
- else if (x_steps_to_take + y_steps_to_take > 0) while(e_steps_remaining) { do_e_step(); e_steps_remaining--;}
- //Else, normally check if e steps must be taken
- else while (timediff >= e_interval && e_steps_remaining) {
- do_e_step();
- e_steps_remaining--;
- timediff -= e_interval;
- #ifdef STEP_DELAY_RATIO
- if(timediff >= e_interval) delayMicroseconds(long_step_delay_ratio * e_interval / 10000);
- #endif
- #ifdef STEP_DELAY_MICROS
- if(timediff >= e_interval) delayMicroseconds(STEP_DELAY_MICROS);
- #endif
- }
- }
- }
-
- if(DISABLE_X) disable_x();
- if(DISABLE_Y) disable_y();
- if(DISABLE_Z) disable_z();
- if(DISABLE_E) disable_e();
-
- // Update current position partly based on direction, we probably can combine this with the direction code above...
- if (destination_x > current_x) current_x = current_x + x_steps_to_take / x_steps_per_unit;
- else current_x = current_x - x_steps_to_take / x_steps_per_unit;
- if (destination_y > current_y) current_y = current_y + y_steps_to_take / y_steps_per_unit;
- else current_y = current_y - y_steps_to_take / y_steps_per_unit;
- if (destination_z > current_z) current_z = current_z + z_steps_to_take / z_steps_per_unit;
- else current_z = current_z - z_steps_to_take / z_steps_per_unit;
- if (destination_e > current_e) current_e = current_e + e_steps_to_take / e_steps_per_unit;
- else current_e = current_e - e_steps_to_take / e_steps_per_unit;
-}
-
-
-inline void do_x_step()
-{
- digitalWrite(X_STEP_PIN, HIGH);
- previous_micros_x += interval;
- //delayMicroseconds(3);
- digitalWrite(X_STEP_PIN, LOW);
-}
-
-inline void do_y_step()
-{
- digitalWrite(Y_STEP_PIN, HIGH);
- previous_micros_y += interval;
- //delayMicroseconds(3);
- digitalWrite(Y_STEP_PIN, LOW);
-}
-
-inline void do_z_step()
-{
- digitalWrite(Z_STEP_PIN, HIGH);
- previous_micros_z += z_interval;
- //delayMicroseconds(3);
- digitalWrite(Z_STEP_PIN, LOW);
-}
-
-inline void do_e_step()
-{
- digitalWrite(E_STEP_PIN, HIGH);
- previous_micros_e += e_interval;
- //delayMicroseconds(3);
- digitalWrite(E_STEP_PIN, LOW);
-}
-
-inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); }
-inline void disable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN,!Y_ENABLE_ON); }
-inline void disable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN,!Z_ENABLE_ON); }
-inline void disable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN,!E_ENABLE_ON); }
-inline void enable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN, X_ENABLE_ON); }
-inline void enable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN, Y_ENABLE_ON); }
-inline void enable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN, Z_ENABLE_ON); }
-inline void enable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN, E_ENABLE_ON); }
-
-#define HEAT_INTERVAL 250
-#ifdef HEATER_USES_MAX6675
-unsigned long max6675_previous_millis = 0;
-int max6675_temp = 2000;
-
-inline int read_max6675()
-{
- if (millis() - max6675_previous_millis < HEAT_INTERVAL)
- return max6675_temp;
-
- max6675_previous_millis = millis();
-
- max6675_temp = 0;
-
- #ifdef PRR
- PRR &= ~(1<<PRSPI);
- #elif defined PRR0
- PRR0 &= ~(1<<PRSPI);
- #endif
-
- SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
-
- // enable TT_MAX6675
- digitalWrite(MAX6675_SS, 0);
-
- // ensure 100ns delay - a bit extra is fine
- delay(1);
-
- // read MSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp = SPDR;
- max6675_temp <<= 8;
-
- // read LSB
- SPDR = 0;
- for (;(SPSR & (1<<SPIF)) == 0;);
- max6675_temp |= SPDR;
-
- // disable TT_MAX6675
- digitalWrite(MAX6675_SS, 1);
-
- if (max6675_temp & 4)
- {
- // thermocouple open
- max6675_temp = 2000;
- }
- else
- {
- max6675_temp = max6675_temp >> 3;
- }
-
- return max6675_temp;
-}
-#endif
-
-
-inline void manage_heater()
-{
- if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
- return;
- previous_millis_heater = millis();
- #ifdef HEATER_USES_THERMISTOR
- current_raw = analogRead(TEMP_0_PIN);
- // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
- // this switches it up so that the reading appears lower than target for the control logic.
- current_raw = 1023 - current_raw;
- #elif defined HEATER_USES_AD595
- current_raw = analogRead(TEMP_0_PIN);
- #elif defined HEATER_USES_MAX6675
- current_raw = read_max6675();
- #endif
- #ifdef SMOOTHING
- nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
- current_raw = nma / SMOOTHFACTOR;
- #endif
- #ifdef WATCHPERIOD
- if(watchmillis && millis() - watchmillis > WATCHPERIOD){
- if(watch_raw + 1 >= current_raw){
- target_raw = 0;
- digitalWrite(HEATER_0_PIN,LOW);
- digitalWrite(LED_PIN,LOW);
- }else{
- watchmillis = 0;
- }
- }
- #endif
- #ifdef MINTEMP
- if(current_raw <= minttemp)
- target_raw = 0;
- #endif
- #ifdef MAXTEMP
- if(current_raw >= maxttemp) {
- target_raw = 0;
- }
- #endif
- #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX66675)
- #ifdef PIDTEMP
- error = target_raw - current_raw;
- pTerm = (PID_PGAIN * error) / 100;
- temp_iState += error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = (PID_IGAIN * temp_iState) / 100;
- dTerm = (PID_DGAIN * (current_raw - temp_dState)) / 100;
- temp_dState = current_raw;
- analogWrite(HEATER_0_PIN, constrain(pTerm + iTerm - dTerm, 0, PID_MAX));
- #else
- if(current_raw >= target_raw)
- {
- digitalWrite(HEATER_0_PIN,LOW);
- digitalWrite(LED_PIN,LOW);
- }
- else
- {
- digitalWrite(HEATER_0_PIN,HIGH);
- digitalWrite(LED_PIN,HIGH);
- }
- #endif
- #endif
-
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
- return;
- previous_millis_bed_heater = millis();
-
- #ifdef BED_USES_THERMISTOR
-
- current_bed_raw = analogRead(TEMP_1_PIN);
-
- // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target,
- // this switches it up so that the reading appears lower than target for the control logic.
- current_bed_raw = 1023 - current_bed_raw;
- #elif defined BED_USES_AD595
- current_bed_raw = analogRead(TEMP_1_PIN);
-
- #endif
-
-
- #if TEMP_1_PIN > -1
- if(current_bed_raw >= target_bed_raw)
- {
- digitalWrite(HEATER_1_PIN,LOW);
- }
- else
- {
- digitalWrite(HEATER_1_PIN,HIGH);
- }
- #endif
-}
-
-// Takes hot end temperature value as input and returns corresponding raw value.
-// For a thermistor, it uses the RepRap thermistor temp table.
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
-float temp2analog(int celsius) {
- #ifdef HEATER_USES_THERMISTOR
- int raw = 0;
- byte i;
-
- for (i=1; i<NUMTEMPS; i++)
- {
- if (temptable[i][1] < celsius)
- {
- raw = temptable[i-1][0] +
- (celsius - temptable[i-1][1]) *
- (temptable[i][0] - temptable[i-1][0]) /
- (temptable[i][1] - temptable[i-1][1]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS) raw = temptable[i-1][0];
-
- return 1023 - raw;
- #elif defined HEATER_USES_AD595
- return celsius * (1024.0 / (5.0 * 100.0) );
- #elif defined HEATER_USES_MAX6675
- return celsius * 4.0;
- #endif
-}
-
-// Takes bed temperature value as input and returns corresponding raw value.
-// For a thermistor, it uses the RepRap thermistor temp table.
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
-float temp2analogBed(int celsius) {
- #ifdef BED_USES_THERMISTOR
-
- int raw = 0;
- byte i;
-
- for (i=1; i<BNUMTEMPS; i++)
- {
- if (bedtemptable[i][1] < celsius)
- {
- raw = bedtemptable[i-1][0] +
- (celsius - bedtemptable[i-1][1]) *
- (bedtemptable[i][0] - bedtemptable[i-1][0]) /
- (bedtemptable[i][1] - bedtemptable[i-1][1]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
-
- return 1023 - raw;
- #elif defined BED_USES_AD595
- return celsius * (1024.0 / (5.0 * 100.0) );
- #endif
-}
-
-// Derived from RepRap FiveD extruder::getTemperature()
-// For hot end temperature measurement.
-float analog2temp(int raw) {
- #ifdef HEATER_USES_THERMISTOR
- int celsius = 0;
- byte i;
-
- raw = 1023 - raw;
-
- for (i=1; i<NUMTEMPS; i++)
- {
- if (temptable[i][0] > raw)
- {
- celsius = temptable[i-1][1] +
- (raw - temptable[i-1][0]) *
- (temptable[i][1] - temptable[i-1][1]) /
- (temptable[i][0] - temptable[i-1][0]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS) celsius = temptable[i-1][1];
-
- return celsius;
- #elif defined HEATER_USES_AD595
- return raw * ((5.0 * 100.0) / 1024.0);
- #elif defined HEATER_USES_MAX6675
- return raw * 0.25;
- #endif
-}
-
-// Derived from RepRap FiveD extruder::getTemperature()
-// For bed temperature measurement.
-float analog2tempBed(int raw) {
- #ifdef BED_USES_THERMISTOR
- int celsius = 0;
- byte i;
-
- raw = 1023 - raw;
-
- for (i=1; i<NUMTEMPS; i++)
- {
- if (bedtemptable[i][0] > raw)
- {
- celsius = bedtemptable[i-1][1] +
- (raw - bedtemptable[i-1][0]) *
- (bedtemptable[i][1] - bedtemptable[i-1][1]) /
- (bedtemptable[i][0] - bedtemptable[i-1][0]);
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS) celsius = bedtemptable[i-1][1];
-
- return celsius;
-
- #elif defined BED_USES_AD595
- return raw * ((5.0 * 100.0) / 1024.0);
- #endif
-}
-
-inline void kill()
-{
- #if TEMP_0_PIN > -1
- target_raw=0;
- digitalWrite(HEATER_0_PIN,LOW);
- #endif
- #if TEMP_1_PIN > -1
- target_bed_raw=0;
- if(HEATER_1_PIN > -1) digitalWrite(HEATER_1_PIN,LOW);
- #endif
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
-
-}
-
-inline void manage_inactivity(byte debug) {
-if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
-if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); }
-}