summaryrefslogtreecommitdiff
path: root/Sprinter/heater.cpp
blob: 119e547c4486c2ae7191496e0c756603049691fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/*
 Reprap heater funtions based on Sprinter

 
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>. */

/*
 This softwarepart for Heatercontrol is based on Sprinter
 big thanks to kliment (https://github.com/kliment/Sprinter)
*/


#include <avr/pgmspace.h>

#include "heater.h"
#include "fastio.h"
#include "pins.h"
#include "Sprinter.h"

#ifdef CONTROLLERFAN_PIN
  void controllerFan(void);
#endif

#ifdef EXTRUDERFAN_PIN
  void extruderFan(void);
#endif

// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the 
// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25 
// degree increments (i.e. 100=25 deg). 

int target_raw = 0;
int target_temp = 0;
int current_raw = 0;
int current_raw_maxval = -32000;
int current_raw_minval = 32000;
int tt_maxval;
int tt_minval;
int target_bed_raw = 0;
int current_bed_raw = 0;
unsigned long previous_millis_heater, previous_millis_bed_heater, previous_millis_monitor;

#ifdef PIDTEMP
  volatile unsigned char g_heater_pwm_val = 0;
 
  //unsigned char PWM_off_time = 0;
  //unsigned char PWM_out_on = 0;
  
  int temp_iState = 0;
  int temp_dState = 0;
  int prev_temp = 0;
  int pTerm;
  int iTerm;
  int dTerm;
      //int output;
  int error;
  int heater_duty = 0;
  int temp_iState_min = 256L * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
  int temp_iState_max = 256L * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
#endif


#if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
  volatile unsigned char g_fan_pwm_val = 0;
#endif

#ifdef AUTOTEMP
    float autotemp_max=AUTO_TEMP_MAX;
    float autotemp_min=AUTO_TEMP_MIN;
    float autotemp_factor=AUTO_TEMP_FACTOR;
    int   autotemp_setpoint=0;
    bool autotemp_enabled=true;
#endif

#ifndef HEATER_CURRENT
  #define HEATER_CURRENT 255
#endif

#ifdef SMOOTHING
  uint32_t nma = 0;
#endif

#ifdef WATCHPERIOD
  int watch_raw = -1000;
  unsigned long watchmillis = 0;
#endif

#ifdef MINTEMP
  int minttemp = temp2analogh(MINTEMP);
#endif

#ifdef MAXTEMP
  int maxttemp = temp2analogh(MAXTEMP);
#endif



#define HEAT_INTERVAL 250
#ifdef HEATER_USES_MAX6675
unsigned long max6675_previous_millis = 0;
int max6675_temp = 2000;

int read_max6675()
{
  if (millis() - max6675_previous_millis < HEAT_INTERVAL) 
    return max6675_temp;
  
  max6675_previous_millis = millis();

  max6675_temp = 0;
    
  #ifdef	PRR
    PRR &= ~(1<<PRSPI);
  #elif defined PRR0
    PRR0 &= ~(1<<PRSPI);
  #endif
  
  SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  
  // enable TT_MAX6675
  WRITE(MAX6675_SS, 0);
  
  // ensure 100ns delay - a bit extra is fine
  delay(1);
  
  // read MSB
  SPDR = 0;
  for (;(SPSR & (1<<SPIF)) == 0;);
  max6675_temp = SPDR;
  max6675_temp <<= 8;
  
  // read LSB
  SPDR = 0;
  for (;(SPSR & (1<<SPIF)) == 0;);
  max6675_temp |= SPDR;
  
  // disable TT_MAX6675
  WRITE(MAX6675_SS, 1);

  if (max6675_temp & 4) 
  {
    // thermocouple open
    max6675_temp = 2000;
  }
  else 
  {
    max6675_temp = max6675_temp >> 3;
  }

  return max6675_temp;
}
#endif


//------------------------------------------------------------------------
// Soft PWM for Heater and FAN
//------------------------------------------------------------------------

#if defined(PID_SOFT_PWM) || (defined(FAN_SOFT_PWM) && (FAN_PIN > -1))
 void init_Timer2_softpwm(void)
 {
  // This is a simple SOFT PWM with 500 Hz for Extruder Heating

  TIFR2 = (1 << TOV2);          // clear interrupt flag
  TCCR2B = (1 << CS22) | (1 << CS20);         // start timer (ck/128 prescalar)
  TCCR2A = 0;//(1 << WGM21);        // Normal mode
  
   TIMSK2 |= (1 << TOIE2);
  
  #ifdef PID_SOFT_PWM
   OCR2A = 128;                  // We want to have at least 500Hz or else it gets choppy
   TIMSK2 |= (1 << OCIE2A);       // enable timer2 output compare match interrupt
  #endif
  
  #if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
   OCR2B = 128;                  // We want to have at least 500Hz or else it gets choppy
   TIMSK2 |= (1 << OCIE2B);       // enable timer2 output compare match interrupt
  #endif
 
 }
#endif

#if defined(PID_SOFT_PWM) || (defined(FAN_SOFT_PWM) && (FAN_PIN > -1))
ISR(TIMER2_OVF_vect)
{
  
  //--------------------------------------
  // Soft PWM, Heater, start PWM cycle
  //--------------------------------------
  #ifdef PID_SOFT_PWM
    if(g_heater_pwm_val >= 2)
    {
      #if LED_PIN > -1
        WRITE(LED_PIN,HIGH);
      #endif
      WRITE(HEATER_0_PIN,HIGH);

      if(g_heater_pwm_val <= 253)
        OCR2A = g_heater_pwm_val; 
      else
        OCR2A = 192; 
    }
    else
    {
      #if LED_PIN > -1
        WRITE(LED_PIN,LOW);
      #endif
      WRITE(HEATER_0_PIN,LOW);
      OCR2A = 192; 
    }
  #endif
  
  //--------------------------------------
  // Soft PWM, Fan, start PWM cycle
  //--------------------------------------
  #if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
    if(g_fan_pwm_val >= 2)
    {
      #if (FAN_PIN > -1) 
        WRITE(FAN_PIN,HIGH);
      #endif  
      
      if(g_fan_pwm_val <= 253)
        OCR2B = g_fan_pwm_val; 
      else
        OCR2B = 128; 
    }
    else
    {
      #if (FAN_PIN > -1) 
        WRITE(FAN_PIN,LOW);
      #endif  
      
      OCR2B = 128; 
    }
  #endif
  

}
#endif


 #ifdef PID_SOFT_PWM
 ISR(TIMER2_COMPA_vect)
 {


   if(g_heater_pwm_val > 253)
   {
     #if LED_PIN > -1
       WRITE(LED_PIN,HIGH);
     #endif
     WRITE(HEATER_0_PIN,HIGH);
   }
   else
   {
     #if LED_PIN > -1
       WRITE(LED_PIN,LOW);
     #endif
     WRITE(HEATER_0_PIN,LOW);
   }
   

 }
 #endif
 

 #if defined(FAN_SOFT_PWM) && (FAN_PIN > -1)
 ISR(TIMER2_COMPB_vect)
 {

   
   if(g_fan_pwm_val > 253)
   {
     #if (FAN_PIN > -1) 
       WRITE(FAN_PIN,HIGH);
     #endif
   }
   else
   {
     #if (FAN_PIN > -1) 
       WRITE(FAN_PIN,LOW);
     #endif
   }  


 }  
 #endif
 //--------------------END SOFT PWM---------------------------

//-------------------- START PID AUTOTUNE ---------------------------
// Based on PID relay test 
// Thanks to Erik van der Zalm for this idea to use it for Marlin
// Some information see:
// http://brettbeauregard.com/blog/2012/01/arduino-pid-autotune-library/
//------------------------------------------------------------------
#ifdef PID_AUTOTUNE
void PID_autotune(int PIDAT_test_temp)
{
  float PIDAT_input = 0;
  int PIDAT_input_help = 0;
  unsigned char PIDAT_count_input = 0;

  float PIDAT_max, PIDAT_min;
 
  unsigned char PIDAT_PWM_val = HEATER_CURRENT;
  
  unsigned char PIDAT_cycles=0;
  bool PIDAT_heating = true;

  unsigned long PIDAT_temp_millis = millis();
  unsigned long PIDAT_t1=PIDAT_temp_millis;
  unsigned long PIDAT_t2=PIDAT_temp_millis;
  unsigned long PIDAT_T_check_AI_val = PIDAT_temp_millis;

  unsigned char PIDAT_cycle_cnt = 0;
  
  long PIDAT_t_high;
  long PIDAT_t_low;

  long PIDAT_bias= HEATER_CURRENT/2;
  long PIDAT_d  =  HEATER_CURRENT/2;
  
  float PIDAT_Ku, PIDAT_Tu;
  float PIDAT_Kp, PIDAT_Ki, PIDAT_Kd;
  
  #define PIDAT_TIME_FACTOR ((HEATER_CHECK_INTERVAL*256.0) / 1000.0)
  
  showString(PSTR("PID Autotune start\r\n"));

  target_temp = PIDAT_test_temp;
  
  #ifdef BED_USES_THERMISTOR
   WRITE(HEATER_1_PIN,LOW);
  #endif
  
  for(;;) 
  {
 
    if((millis() - PIDAT_T_check_AI_val) > 100 )
    {
      PIDAT_T_check_AI_val = millis();
      PIDAT_cycle_cnt++;
      
      #ifdef HEATER_USES_THERMISTOR
        current_raw = analogRead(TEMP_0_PIN); 
        current_raw = 1023 - current_raw;
        PIDAT_input_help += analog2temp(current_raw);
        PIDAT_count_input++;
      #elif defined HEATER_USES_AD595
        current_raw = analogRead(TEMP_0_PIN);    
        PIDAT_input_help += analog2temp(current_raw);
        PIDAT_count_input++;
      #elif defined HEATER_USES_MAX6675
        current_raw = read_max6675();
        PIDAT_input_help += analog2temp(current_raw);
        PIDAT_count_input++;
      #endif
    }
    
    if(PIDAT_cycle_cnt >= 10 )
    {
      
      PIDAT_cycle_cnt = 0;
      
      PIDAT_input = (float)PIDAT_input_help / (float)PIDAT_count_input;
      PIDAT_input_help = 0;
      PIDAT_count_input = 0;
      
      PIDAT_max=max(PIDAT_max,PIDAT_input);
      PIDAT_min=min(PIDAT_min,PIDAT_input);
      
      if(PIDAT_heating == true && PIDAT_input > PIDAT_test_temp) 
      {
        if(millis() - PIDAT_t2 > 5000) 
        { 
          PIDAT_heating = false;
          PIDAT_PWM_val = (PIDAT_bias - PIDAT_d);
          PIDAT_t1 = millis();
          PIDAT_t_high = PIDAT_t1 - PIDAT_t2;
          PIDAT_max = PIDAT_test_temp;
        }
      }
      
      if(PIDAT_heating == false && PIDAT_input < PIDAT_test_temp) 
      {
        if(millis() - PIDAT_t1 > 5000) 
        {
          PIDAT_heating = true;
          PIDAT_t2 = millis();
          PIDAT_t_low = PIDAT_t2 - PIDAT_t1;
          
          if(PIDAT_cycles > 0) 
          {
            PIDAT_bias += (PIDAT_d*(PIDAT_t_high - PIDAT_t_low))/(PIDAT_t_low + PIDAT_t_high);
            PIDAT_bias = constrain(PIDAT_bias, 20 ,HEATER_CURRENT - 20);
            if(PIDAT_bias > (HEATER_CURRENT/2)) PIDAT_d = (HEATER_CURRENT - 1) - PIDAT_bias;
            else PIDAT_d = PIDAT_bias;

            showString(PSTR(" bias: ")); Serial.print(PIDAT_bias);
            showString(PSTR(" d: "));    Serial.print(PIDAT_d);
            showString(PSTR(" min: "));  Serial.print(PIDAT_min);
            showString(PSTR(" max: "));  Serial.println(PIDAT_max);
            
            if(PIDAT_cycles > 2) 
            {
              PIDAT_Ku = (4.0*PIDAT_d)/(3.14159*(PIDAT_max-PIDAT_min));
              PIDAT_Tu = ((float)(PIDAT_t_low + PIDAT_t_high)/1000.0);
              
              showString(PSTR(" Ku: ")); Serial.print(PIDAT_Ku);
              showString(PSTR(" Tu: ")); Serial.println(PIDAT_Tu);

              PIDAT_Kp = 0.60*PIDAT_Ku;
              PIDAT_Ki = 2*PIDAT_Kp/PIDAT_Tu;
              PIDAT_Kd = PIDAT_Kp*PIDAT_Tu/8;
              showString(PSTR(" Clasic PID \r\n"));
              //showString(PSTR(" Kp: ")); Serial.println(PIDAT_Kp);
              //showString(PSTR(" Ki: ")); Serial.println(PIDAT_Ki);
              //showString(PSTR(" Kd: ")); Serial.println(PIDAT_Kd);
              showString(PSTR(" CFG Kp: ")); Serial.println((unsigned int)(PIDAT_Kp*256));
              showString(PSTR(" CFG Ki: ")); Serial.println((unsigned int)(PIDAT_Ki*PIDAT_TIME_FACTOR));
              showString(PSTR(" CFG Kd: ")); Serial.println((unsigned int)(PIDAT_Kd*PIDAT_TIME_FACTOR));
              
              PIDAT_Kp = 0.30*PIDAT_Ku;
              PIDAT_Ki = PIDAT_Kp/PIDAT_Tu;
              PIDAT_Kd = PIDAT_Kp*PIDAT_Tu/3;
              showString(PSTR(" Some overshoot \r\n"));
              showString(PSTR(" CFG Kp: ")); Serial.println((unsigned int)(PIDAT_Kp*256));
              showString(PSTR(" CFG Ki: ")); Serial.println((unsigned int)(PIDAT_Ki*PIDAT_TIME_FACTOR));
              showString(PSTR(" CFG Kd: ")); Serial.println((unsigned int)(PIDAT_Kd*PIDAT_TIME_FACTOR));
              /*
              PIDAT_Kp = 0.20*PIDAT_Ku;
              PIDAT_Ki = 2*PIDAT_Kp/PIDAT_Tu;
              PIDAT_Kd = PIDAT_Kp*PIDAT_Tu/3;
              showString(PSTR(" No overshoot \r\n"));
              showString(PSTR(" CFG Kp: ")); Serial.println((unsigned int)(PIDAT_Kp*256));
              showString(PSTR(" CFG Ki: ")); Serial.println((unsigned int)(PIDAT_Ki*PIDAT_TIME_FACTOR));
              showString(PSTR(" CFG Kd: ")); Serial.println((unsigned int)(PIDAT_Kd*PIDAT_TIME_FACTOR));
              */
            }
          }
          PIDAT_PWM_val = (PIDAT_bias + PIDAT_d);
          PIDAT_cycles++;
          PIDAT_min = PIDAT_test_temp;
        }
      } 
      
      #ifdef PID_SOFT_PWM
        g_heater_pwm_val = PIDAT_PWM_val;
      #else
        analogWrite_check(HEATER_0_PIN, PIDAT_PWM_val);
        #if LED_PIN>-1
          analogWrite_check(LED_PIN, PIDAT_PWM_val);
        #endif
      #endif  
    }
    
    if(PIDAT_input > (PIDAT_test_temp + 25)) 
    {
      showString(PSTR("PID Autotune failed! Temperature to high\r\n"));
      return;
    }
    
    if(millis() - PIDAT_temp_millis > 2000) 
    {
      PIDAT_temp_millis = millis();
      showString(PSTR("ok T:"));
      Serial.print(PIDAT_input);   
      showString(PSTR(" @:"));
      Serial.println((unsigned char)PIDAT_PWM_val*1);       
    }
    
    if(((millis() - PIDAT_t1) + (millis() - PIDAT_t2)) > (10L*60L*1000L*2L)) 
    {
      showString(PSTR("PID Autotune failed! timeout\r\n"));
      return;
    }
    
    if(PIDAT_cycles > 5) 
    {
      showString(PSTR("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h\r\n"));
      return;
    }
  }
}
#endif  
//---------------- END AUTOTUNE PID ------------------------------

 void updatePID()
 {
   #ifdef PIDTEMP
    temp_iState_min = (256L * -PID_INTEGRAL_DRIVE_MAX) / PID_Ki;
    temp_iState_max = (256L * PID_INTEGRAL_DRIVE_MAX) / PID_Ki;
   #endif
 }
 
 void manage_heater()
 {

  //Temperatur Monitor for repetier
  if((millis() - previous_millis_monitor) > 250 )
  {
    previous_millis_monitor = millis();


    if(manage_monitor <= 1)
    {
      showString(PSTR("MTEMP:"));
      Serial.print(millis());
      if(manage_monitor<1)
      {
        showString(PSTR(" "));
        Serial.print(analog2temp(current_raw));
        showString(PSTR(" "));
        Serial.print(target_temp);
        showString(PSTR(" "));
        #ifdef PIDTEMP
        Serial.println(heater_duty);
        #else 
          #if (HEATER_0_PIN > -1)
          if(READ(HEATER_0_PIN))
            Serial.println(255);
          else
            Serial.println(0);
          #else
          Serial.println(0);
          #endif
        #endif
      }
      #if THERMISTORBED!=0
      else
      {
        showString(PSTR(" "));
        Serial.print(analog2tempBed(current_bed_raw));
        showString(PSTR(" "));
        Serial.print(analog2tempBed(target_bed_raw));
        showString(PSTR(" "));
        #if (HEATER_1_PIN > -1)
          if(READ(HEATER_1_PIN))
            Serial.println(255);
          else
            Serial.println(0);
        #else
          Serial.println(0);
        #endif  
      }
      #endif
      
    }
  
  }
  // ENDE Temperatur Monitor for repetier
 
  if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
    return;
    
  previous_millis_heater = millis();
  
  #ifdef HEATER_USES_THERMISTOR
    current_raw = analogRead(TEMP_0_PIN); 
    #ifdef DEBUG_HEAT_MGMT
      log_int("_HEAT_MGMT - analogRead(TEMP_0_PIN)", current_raw);
      log_int("_HEAT_MGMT - NUMTEMPS", NUMTEMPS);
    #endif
    // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, 
    // this switches it up so that the reading appears lower than target for the control logic.
    current_raw = 1023 - current_raw;
  #elif defined HEATER_USES_AD595
    current_raw = analogRead(TEMP_0_PIN);    
  #elif defined HEATER_USES_MAX6675
    current_raw = read_max6675();
  #endif
  
  //MIN / MAX save to display the jitter of Heaterbarrel
  if(current_raw > current_raw_maxval)
    current_raw_maxval = current_raw;
    
  if(current_raw < current_raw_minval)
    current_raw_minval = current_raw;
 
  #ifdef SMOOTHING
    if (!nma) nma = SMOOTHFACTOR * current_raw;
    nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
    current_raw = nma / SMOOTHFACTOR;
  #endif
  
  #ifdef WATCHPERIOD
    if(watchmillis && millis() - watchmillis > WATCHPERIOD)
    {
        if(watch_raw + 1 >= current_raw)
        {
            target_temp = target_raw = 0;
            WRITE(HEATER_0_PIN,LOW);

            #ifdef PID_SOFT_PWM
              g_heater_pwm_val = 0;           
            #else
              analogWrite(HEATER_0_PIN, 0);
              #if LED_PIN>-1
                WRITE(LED_PIN,LOW);
              #endif
            #endif
        }
        else
        {
            watchmillis = 0;
        }
    }
  #endif
  
  //If tmp is lower then MINTEMP stop the Heater
  //or it os better to deaktivate the uutput PIN or PWM ?
  #ifdef MINTEMP
    if(current_raw <= minttemp)
        target_temp = target_raw = 0;
  #endif
  
  #ifdef MAXTEMP
    if(current_raw >= maxttemp)
    {
        target_temp = target_raw = 0;
    
        #if (ALARM_PIN > -1) 
          WRITE(ALARM_PIN,HIGH);
        #endif
    }
  #endif

  #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675) || defined (HEATER_USES_AD595)
    #ifdef PIDTEMP
      
      int current_temp = analog2temp(current_raw);
      error = target_temp - current_temp;
      int delta_temp = current_temp - prev_temp;
      
      prev_temp = current_temp;
      pTerm = ((long)PID_Kp * error) / 256;
      const int H0 = min(HEATER_DUTY_FOR_SETPOINT(target_temp),HEATER_CURRENT);
      heater_duty = H0 + pTerm;
      
      if(error < 30)
      {
        temp_iState += error;
        temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
        iTerm = ((long)PID_Ki * temp_iState) / 256;
        heater_duty += iTerm;
      }
      
      int prev_error = abs(target_temp - prev_temp);
      int log3 = 1; // discrete logarithm base 3, plus 1
      
      if(prev_error > 81){ prev_error /= 81; log3 += 4; }
      if(prev_error >  9){ prev_error /=  9; log3 += 2; }
      if(prev_error >  3){ prev_error /=  3; log3 ++;   }
      
      dTerm = ((long)PID_Kd * delta_temp) / (256*log3);
      heater_duty += dTerm;
      heater_duty = constrain(heater_duty, 0, HEATER_CURRENT);

      #ifdef PID_SOFT_PWM
        if(target_raw != 0)
          g_heater_pwm_val = (unsigned char)heater_duty;
        else
          g_heater_pwm_val = 0;
      #else
        if(target_raw != 0)
          analogWrite(HEATER_0_PIN, heater_duty);
        else
          analogWrite(HEATER_0_PIN, 0);
    
        #if LED_PIN>-1
          if(target_raw != 0)
            analogWrite(LED_PIN, constrain(LED_PWM_FOR_BRIGHTNESS(heater_duty),0,255));
          else
            analogWrite(LED_PIN, 0);
        #endif
      #endif
  
    #else
    
      if(current_raw >= target_raw)
      {
        WRITE(HEATER_0_PIN,LOW);
        #if LED_PIN>-1
            WRITE(LED_PIN,LOW);
        #endif
      }
      else 
      {
        if(target_raw != 0)
        {
          WRITE(HEATER_0_PIN,HIGH);
          #if LED_PIN > -1
              WRITE(LED_PIN,HIGH);
          #endif
        }
      }
    #endif
  #endif
    
  if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
    return;
  
  previous_millis_bed_heater = millis();

  #ifndef TEMP_1_PIN
    return;
  #endif

  #if TEMP_1_PIN == -1
    return;
  #else
  
  #ifdef BED_USES_THERMISTOR
  
    current_bed_raw = analogRead(TEMP_1_PIN);   
  
    #ifdef DEBUG_HEAT_MGMT
      log_int("_HEAT_MGMT - analogRead(TEMP_1_PIN)", current_bed_raw);
      log_int("_HEAT_MGMT - BNUMTEMPS", BNUMTEMPS);
    #endif               
  
    // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, 
    // this switches it up so that the reading appears lower than target for the control logic.
    current_bed_raw = 1023 - current_bed_raw;
  #elif defined BED_USES_AD595
    current_bed_raw = analogRead(TEMP_1_PIN);                  

  #endif
  
  
  #ifdef MINTEMP
    if(current_bed_raw >= target_bed_raw || current_bed_raw < minttemp)
  #else
    if(current_bed_raw >= target_bed_raw)
  #endif
    {
      WRITE(HEATER_1_PIN,LOW);
    }
    else 
    {
      WRITE(HEATER_1_PIN,HIGH);
    }
    #endif
    
#ifdef CONTROLLERFAN_PIN
  controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif

#ifdef EXTRUDERFAN_PIN
  extruderFan(); //Check if fan should be turned on to cool extruder down
#endif

}

#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
int temp2analog_thermistor(int celsius, const short table[][2], int numtemps) 
{
    int raw = 0;
    byte i;
    
    for (i=1; i<numtemps; i++)
    {
      if (table[i][1] < celsius)
      {
        raw = table[i-1][0] + 
          (celsius - table[i-1][1]) * 
          (table[i][0] - table[i-1][0]) /
          (table[i][1] - table[i-1][1]);
      
        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == numtemps) raw = table[i-1][0];

    return 1023 - raw;
}
#endif

#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
int temp2analog_ad595(int celsius) 
{
    return celsius * 1024 / (500);
}
#endif

#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
int temp2analog_max6675(int celsius) 
{
    return celsius * 4;
}
#endif

#if defined (HEATER_USES_THERMISTOR) || defined (BED_USES_THERMISTOR)
int analog2temp_thermistor(int raw,const short table[][2], int numtemps) {
    int celsius = 0;
    byte i;
    
    raw = 1023 - raw;

    for (i=1; i<numtemps; i++)
    {
      if (table[i][0] > raw)
      {
        celsius  = table[i-1][1] + 
          (raw - table[i-1][0]) * 
          (table[i][1] - table[i-1][1]) /
          (table[i][0] - table[i-1][0]);

        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == numtemps) celsius = table[i-1][1];

    return celsius;
}
#endif

#if defined (HEATER_USES_AD595) || defined (BED_USES_AD595)
int analog2temp_ad595(int raw)
{
        return raw * 500 / 1024;
}
#endif

#if defined (HEATER_USES_MAX6675) || defined (BED_USES_MAX6675)
int analog2temp_max6675(int raw)
{
    return raw / 4;
}
#endif

#ifdef CONTROLLERFAN_PIN
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;

void controllerFan()
{  
  if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  {
    lastMotorCheck = millis();
    
    if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || !READ(E_ENABLE_PIN)) //If any of the drivers are enabled...
    {
      lastMotor = millis(); //... set time to NOW so the fan will turn on
    }
    
    if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
    {
      WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
    }
    else
    {
      WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
    }
  }
}
#endif

#ifdef EXTRUDERFAN_PIN
unsigned long lastExtruderCheck = 0;

void extruderFan()
{
  if ((millis() - lastExtruderCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  {
    lastExtruderCheck = millis();
           
    if (analog2temp(current_raw) < EXTRUDERFAN_DEC)
    {
      WRITE(EXTRUDERFAN_PIN, LOW); //... turn the fan off
    }
    else
    {
      WRITE(EXTRUDERFAN_PIN, HIGH); //... turn the fan on
    }
  }
}
#endif