1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/*
EEPROM routines to save Sprinter Settings
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include "Sprinter.h"
#include "store_eeprom.h"
#include "Configuration.h"
#ifdef PIDTEMP
extern unsigned int PID_Kp, PID_Ki, PID_Kd;
#endif
#ifdef USE_EEPROM_SETTINGS
//======================================================================================
//========================= Read / Write EEPROM =======================================
template <class T> int EEPROM_write_setting(int address, const T& value)
{
const byte* p = (const byte*)(const void*)&value;
int i;
for (i = 0; i < (int)sizeof(value); i++)
eeprom_write_byte((unsigned char *)address++, *p++);
return i;
}
template <class T> int EEPROM_read_setting(int address, T& value)
{
byte* p = (byte*)(void*)&value;
int i;
for (i = 0; i < (int)sizeof(value); i++)
*p++ = eeprom_read_byte((unsigned char *)address++);
return i;
}
//======================================================================================
void EEPROM_StoreSettings()
{
char ver[4]= "000";
EEPROM_write_setting(EEPROM_OFFSET, ver); // invalidate data first
EEPROM_write_setting(axis_steps_per_unit_address, axis_steps_per_unit);
EEPROM_write_setting(max_feedrate_address, max_feedrate);
EEPROM_write_setting(max_acceleration_units_per_sq_second_address, max_acceleration_units_per_sq_second);
EEPROM_write_setting(move_acceleration_address, move_acceleration);
EEPROM_write_setting(retract_acceleration_address, retract_acceleration);
EEPROM_write_setting(minimumfeedrate_address, minimumfeedrate);
EEPROM_write_setting(mintravelfeedrate_address, mintravelfeedrate);
EEPROM_write_setting(min_seg_time_address, min_seg_time); //Min Segment Time, not used yet
EEPROM_write_setting(max_xy_jerk_address, max_xy_jerk);
EEPROM_write_setting(max_z_jerk_address, max_z_jerk);
EEPROM_write_setting(max_e_jerk_address, max_e_jerk);
//PID Settings
#ifdef PIDTEMP
EEPROM_write_setting(Kp_address, PID_Kp); //Kp
EEPROM_write_setting(Ki_address, PID_Ki); //Ki
EEPROM_write_setting(Kd_address, PID_Kd); //Kd
#else
EEPROM_write_setting(Kp_address, 2048); //Kp
EEPROM_write_setting(Ki_address, 32); //Ki
EEPROM_write_setting(Kd_address, 2048); //Kd
#endif
char ver2[4]=EEPROM_VERSION;
EEPROM_write_setting(EEPROM_OFFSET, ver2); // validate data
showString(PSTR("Settings Stored\r\n"));
}
void EEPROM_printSettings()
{
#ifdef PRINT_EEPROM_SETTING
showString(PSTR("Steps per unit:\r\n"));
showString(PSTR(" M92 X"));
Serial.print(axis_steps_per_unit[0]);
showString(PSTR(" Y"));
Serial.print(axis_steps_per_unit[1]);
showString(PSTR(" Z"));
Serial.print(axis_steps_per_unit[2]);
showString(PSTR(" E"));
Serial.println(axis_steps_per_unit[3]);
showString(PSTR("Maximum feedrates (mm/s):\r\n"));
showString(PSTR(" M202 X"));
Serial.print(max_feedrate[0]);
showString(PSTR(" Y"));
Serial.print(max_feedrate[1]);
showString(PSTR(" Z"));
Serial.print(max_feedrate[2]);
showString(PSTR(" E"));
Serial.println(max_feedrate[3]);
showString(PSTR("Maximum Acceleration (mm/s2):\r\n"));
showString(PSTR(" M201 X"));
Serial.print(max_acceleration_units_per_sq_second[0] );
showString(PSTR(" Y"));
Serial.print(max_acceleration_units_per_sq_second[1] );
showString(PSTR(" Z"));
Serial.print(max_acceleration_units_per_sq_second[2] );
showString(PSTR(" E"));
Serial.println(max_acceleration_units_per_sq_second[3]);
showString(PSTR("Acceleration: S=acceleration, T=retract acceleration\r\n"));
showString(PSTR(" M204 S"));
Serial.print(move_acceleration );
showString(PSTR(" T"));
Serial.println(retract_acceleration);
showString(PSTR("Advanced variables (mm/s): S=Min feedrate, T=Min travel feedrate, X=max xY jerk, Z=max Z jerk, E=max E jerk\r\n"));
showString(PSTR(" M205 S"));
Serial.print(minimumfeedrate );
showString(PSTR(" T" ));
Serial.print(mintravelfeedrate );
// showString(PSTR(" B"));
// Serial.print(min_seg_time );
showString(PSTR(" X"));
Serial.print(max_xy_jerk );
showString(PSTR(" Z"));
Serial.print(max_z_jerk);
showString(PSTR(" E"));
Serial.println(max_e_jerk);
#ifdef PIDTEMP
showString(PSTR("PID settings:\r\n"));
showString(PSTR(" M301 P"));
Serial.print(PID_Kp);
showString(PSTR(" I"));
Serial.print(PID_Ki);
showString(PSTR(" D"));
Serial.println(PID_Kd);
#endif
#endif
}
void EEPROM_RetrieveSettings(bool def, bool printout)
{ // if def=true, the default values will be used
int i=EEPROM_OFFSET;
char stored_ver[4];
char ver[4]=EEPROM_VERSION;
EEPROM_read_setting(EEPROM_OFFSET,stored_ver); //read stored version
if ((!def)&&(strncmp(ver,stored_ver,3)==0))
{ // version number match
EEPROM_read_setting(axis_steps_per_unit_address, axis_steps_per_unit);
EEPROM_read_setting(max_feedrate_address, max_feedrate);
EEPROM_read_setting(max_acceleration_units_per_sq_second_address, max_acceleration_units_per_sq_second);
EEPROM_read_setting(move_acceleration_address, move_acceleration);
EEPROM_read_setting(retract_acceleration_address, retract_acceleration);
EEPROM_read_setting(minimumfeedrate_address, minimumfeedrate);
EEPROM_read_setting(mintravelfeedrate_address, mintravelfeedrate);
EEPROM_read_setting(min_seg_time_address, min_seg_time); //min Segmenttime --> not used yet
EEPROM_read_setting(max_xy_jerk_address, max_xy_jerk);
EEPROM_read_setting(max_z_jerk_address, max_z_jerk);
EEPROM_read_setting(max_e_jerk_address, max_e_jerk);
#ifdef PIDTEMP
EEPROM_read_setting(Kp_address, PID_Kp);
EEPROM_read_setting(Ki_address, PID_Ki);
EEPROM_read_setting(Kd_address, PID_Kd);
#endif
showString(PSTR("Stored settings retreived\r\n"));
}
else
{
float tmp1[]=_AXIS_STEP_PER_UNIT;
float tmp2[]=_MAX_FEEDRATE;
long tmp3[]=_MAX_ACCELERATION_UNITS_PER_SQ_SECOND;
for (short i=0;i<4;i++)
{
axis_steps_per_unit[i]=tmp1[i];
max_feedrate[i]=tmp2[i];
max_acceleration_units_per_sq_second[i]=tmp3[i];
}
move_acceleration=_ACCELERATION;
retract_acceleration=_RETRACT_ACCELERATION;
minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
max_xy_jerk=_MAX_XY_JERK;
max_z_jerk=_MAX_Z_JERK;
max_e_jerk=_MAX_E_JERK;
min_seg_time=_MIN_SEG_TIME;
#ifdef PIDTEMP
PID_Kp = PID_PGAIN;
PID_Ki = PID_IGAIN;
PID_Kd = PID_DGAIN;
#endif
showString(PSTR("Using Default settings\r\n"));
}
if(printout)
{
EEPROM_printSettings();
}
}
#endif
|