summaryrefslogtreecommitdiff
path: root/Tonokip_Firmware/Tonokip_Firmware.pde
blob: 1ca5239023fa35141719f4563841bac8aba3d79a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// Licence: GPL

#include "configuration.h"
#include "pins.h"
#include "ThermistorTable.h"

// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes

//Implemented Codes
//-------------------
// G0 -> G1
// G1  - Coordinated Movement X Y Z E
// G4  - Dwell S<seconds> or P<milliseconds>
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given

//RepRap M Codes
// M104 - Set target temp
// M105 - Read current temp
// M109 - Wait for current temp to reach target temp.

//Custom M Codes
// M80  - Turn on Power Supply
// M81  - Turn off Power Supply
// M82  - Set E codes absolute (default)
// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
// M84  - Disable steppers until next move


//Stepper Movement Variables
bool direction_x, direction_y, direction_z, direction_e;
unsigned long previous_micros=0, previous_micros_x=0, previous_micros_y=0, previous_micros_z=0, previous_micros_e=0, previous_millis_heater;
unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take;
float destination_x =0.0, destination_y = 0.0, destination_z = 0.0, destination_e = 0.0;
float current_x = 0.0, current_y = 0.0, current_z = 0.0, current_e = 0.0;
float x_interval, y_interval, z_interval, e_interval; // for speed delay
float feedrate = 1500, next_feedrate;
float time_for_move;
long gcode_N, gcode_LastN;
bool relative_mode = false;  //Determines Absolute or Relative Coordinates
bool relative_mode_e = false;  //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.

// comm variables
#define MAX_CMD_SIZE 256
char cmdbuffer[MAX_CMD_SIZE];
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc

//manage heater variables
int target_raw = 0;
int current_raw;



void setup()
{ 
  //Initialize Step Pins
  if(X_STEP_PIN > -1) pinMode(X_STEP_PIN,OUTPUT);
  if(Y_STEP_PIN > -1) pinMode(Y_STEP_PIN,OUTPUT);
  if(Z_STEP_PIN > -1) pinMode(Z_STEP_PIN,OUTPUT);
  if(E_STEP_PIN > -1) pinMode(E_STEP_PIN,OUTPUT);
  
  //Initialize Dir Pins
  if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT);
  if(Y_DIR_PIN > -1) pinMode(Y_DIR_PIN,OUTPUT);
  if(Z_DIR_PIN > -1) pinMode(Z_DIR_PIN,OUTPUT);
  if(E_DIR_PIN > -1) pinMode(E_DIR_PIN,OUTPUT);

  //Steppers default to disabled.
  if(X_ENABLE_PIN > -1) if(!X_ENABLE_ON) digitalWrite(X_ENABLE_PIN,HIGH);
  if(Y_ENABLE_PIN > -1) if(!Y_ENABLE_ON) digitalWrite(Y_ENABLE_PIN,HIGH);
  if(Z_ENABLE_PIN > -1) if(!Z_ENABLE_ON) digitalWrite(Z_ENABLE_PIN,HIGH);
  if(E_ENABLE_PIN > -1) if(!E_ENABLE_ON) digitalWrite(E_ENABLE_PIN,HIGH);
  
  //Initialize Enable Pins
  if(X_ENABLE_PIN > -1) pinMode(X_ENABLE_PIN,OUTPUT);
  if(Y_ENABLE_PIN > -1) pinMode(Y_ENABLE_PIN,OUTPUT);
  if(Z_ENABLE_PIN > -1) pinMode(Z_ENABLE_PIN,OUTPUT);
  if(E_ENABLE_PIN > -1) pinMode(E_ENABLE_PIN,OUTPUT);

  if(HEATER_0_PIN > -1) pinMode(HEATER_0_PIN,OUTPUT);
  
  Serial.begin(BAUDRATE);
  Serial.println("start");
}


void loop()
{
  get_command();
  manage_heater();
}

inline void get_command() 
{ 

  if( Serial.available() ) {
    serial_char = Serial.read();
    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) 
    {
      if(!serial_count) return; //if empty line
      cmdbuffer[serial_count] = 0; //terminate string
      Serial.print("Echo:");
      Serial.println(&cmdbuffer[0]);
      
      process_commands();
      
      comment_mode = false; //for new command
      serial_count = 0; //clear buffer
      //Serial.println("ok"); 
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[serial_count++] = serial_char; 
    }
  }  
}


//#define code_num (strtod(&cmdbuffer[strchr_pointer - cmdbuffer + 1], NULL))
//inline void code_search(char code) { strchr_pointer = strchr(cmdbuffer, code); }
inline float code_value() { return (strtod(&cmdbuffer[strchr_pointer - cmdbuffer + 1], NULL)); }
inline long code_value_long() { return (strtol(&cmdbuffer[strchr_pointer - cmdbuffer + 1], NULL, 10)); }
inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer, code_string) != NULL); }  //Return True if the string was found

inline bool code_seen(char code)
{
  strchr_pointer = strchr(cmdbuffer, code);
  return (strchr_pointer != NULL);  //Return True if a character was found
}



inline void process_commands()
{
  unsigned long codenum; //throw away variable
  
  if(code_seen('N'))
  {
    gcode_N = code_value_long();
    if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer, "M110") == NULL) ) {
    //if(gcode_N != gcode_LastN+1 && !code_seen("M110") ) {   //Hmm, compile size is different between using this vs the line above even though it should be the same thing. Keeping old method.
      Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
      Serial.println(gcode_LastN);
      FlushSerialRequestResend();
      return;
    }
    
    if(code_seen('*'))
    {
      byte checksum = 0;
      byte count=0;
      while(cmdbuffer[count] != '*') checksum = checksum^cmdbuffer[count++];
     
      if( (int)code_value() != checksum) {
        Serial.print("Error: checksum mismatch, Last Line:");
        Serial.println(gcode_LastN);
        FlushSerialRequestResend();
        return;
      }
      //if no errors, continue parsing
    }
    else 
    {
      Serial.print("Error: No Checksum with line number, Last Line:");
      Serial.println(gcode_LastN);
      FlushSerialRequestResend();
      return;
    }
    
    gcode_LastN = gcode_N;
    //if no errors, continue parsing
  }
  else  // if we don't receive 'N' but still see '*'
  {
    if(code_seen('*'))
    {
      Serial.print("Error: No Line Number with checksum, Last Line:");
      Serial.println(gcode_LastN);
      return;
    }
  }

  //continues parsing only if we don't receive any 'N' or '*' or no errors if we do. :)
  
  if(code_seen('G'))
  {
    switch((int)code_value())
    {
      case 0: // G0 -> G1
      case 1: // G1
        get_coordinates(); // For X Y Z E F
        x_steps_to_take = abs(destination_x - current_x)*x_steps_per_unit;
        y_steps_to_take = abs(destination_y - current_y)*y_steps_per_unit;
        z_steps_to_take = abs(destination_z - current_z)*z_steps_per_unit;
        e_steps_to_take = abs(destination_e - current_e)*e_steps_per_unit;

        #define X_TIME_FOR_MOVE ((float)x_steps_to_take / (x_steps_per_unit*feedrate/60000000))
        #define Y_TIME_FOR_MOVE ((float)y_steps_to_take / (y_steps_per_unit*feedrate/60000000))
        #define Z_TIME_FOR_MOVE ((float)z_steps_to_take / (z_steps_per_unit*feedrate/60000000))
        #define E_TIME_FOR_MOVE ((float)e_steps_to_take / (e_steps_per_unit*feedrate/60000000))
        
        time_for_move = max(X_TIME_FOR_MOVE,Y_TIME_FOR_MOVE);
        time_for_move = max(time_for_move,Z_TIME_FOR_MOVE);
        time_for_move = max(time_for_move,E_TIME_FOR_MOVE);

        if(x_steps_to_take) x_interval = time_for_move/x_steps_to_take;
        if(y_steps_to_take) y_interval = time_for_move/y_steps_to_take;
        if(z_steps_to_take) z_interval = time_for_move/z_steps_to_take;
        if(e_steps_to_take) e_interval = time_for_move/e_steps_to_take;
        
        #define DEBUGGING false
        if(DEBUGGING) {
          Serial.print("destination_x: "); Serial.println(destination_x); 
          Serial.print("current_x: "); Serial.println(current_x); 
          Serial.print("x_steps_to_take: "); Serial.println(x_steps_to_take); 
          Serial.print("X_TIME_FOR_MVE: "); Serial.println(X_TIME_FOR_MOVE); 
          Serial.print("x_interval: "); Serial.println(x_interval); 
          Serial.println("");
          Serial.print("destination_y: "); Serial.println(destination_y); 
          Serial.print("current_y: "); Serial.println(current_y); 
          Serial.print("y_steps_to_take: "); Serial.println(y_steps_to_take); 
          Serial.print("Y_TIME_FOR_MVE: "); Serial.println(Y_TIME_FOR_MOVE); 
          Serial.print("y_interval: "); Serial.println(y_interval); 
          Serial.println("");
          Serial.print("destination_z: "); Serial.println(destination_z); 
          Serial.print("current_z: "); Serial.println(current_z); 
          Serial.print("z_steps_to_take: "); Serial.println(z_steps_to_take); 
          Serial.print("Z_TIME_FOR_MVE: "); Serial.println(Z_TIME_FOR_MOVE); 
          Serial.print("z_interval: "); Serial.println(z_interval); 
          Serial.println("");
          Serial.print("destination_e: "); Serial.println(destination_e); 
          Serial.print("current_e: "); Serial.println(current_e); 
          Serial.print("e_steps_to_take: "); Serial.println(e_steps_to_take); 
          Serial.print("E_TIME_FOR_MVE: "); Serial.println(E_TIME_FOR_MOVE); 
          Serial.print("e_interval: "); Serial.println(e_interval); 
          Serial.println("");
        }
        
        linear_move(x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take); // make the move
        ClearToSend();
        return;
      case 4: // G4 dwell
        codenum = 0;
        if(code_seen('P')) codenum = code_value(); // milliseconds to wait
        if(code_seen('S')) codenum = code_value()*1000; // seconds to wait
        previous_millis_heater = millis();  // keep track of when we started waiting
        while((millis() - previous_millis_heater) < codenum ) manage_heater(); //manage heater until time is up
        break;
      case 90: // G90
        relative_mode = false;
        break;
      case 91: // G91
        relative_mode = true;
        break;
      case 92: // G92
        if(code_seen('X')) current_x = code_value();
        if(code_seen('Y')) current_y = code_value();
        if(code_seen('Z')) current_z = code_value();
        if(code_seen('E')) current_e = code_value();
        break;
        
    }
  }

  if(code_seen('M'))
  {
    
    switch( (int)code_value() ) 
    {
      case 104: // M104
        if (code_seen('S')) target_raw = temp2analog(code_value());
        break;
      case 105: // M105
          Serial.print("T:");
          Serial.println( analog2temp(analogRead(TEMP_0_PIN)) ); 
          if(code_seen('N')) Serial.println("ok");  // If M105 is sent from generated gcode, then it needs a response.
          return; //If RepSnapper sends the M105 then DON'T respond "ok".
        break;
      case 109: // M109 - Wait for heater to reach target.
        if (code_seen('S')) target_raw = temp2analog(code_value());
        previous_millis_heater = millis(); 
        while(current_raw < target_raw) {
          if( (millis()-previous_millis_heater) > 1000 ) //Print Temp Reading every 1 second while heating up.
          {
            Serial.print("T:");
            Serial.println( analog2temp(analogRead(TEMP_0_PIN)) ); 
            previous_millis_heater = millis(); 
          }
          manage_heater();
        }
        break;
      case 80: // M81 - ATX Power On
        if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND
        break;
      case 81: // M81 - ATX Power Off
        if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
        break;
      case 82:
        relative_mode_e = false;
        break;
      case 83:
        relative_mode_e = true;
        break;
      case 84:
        disable_x();
        disable_y();
        disable_z();
        disable_e();
        break;
    }
    
  }
  
  ClearToSend();
}

inline void FlushSerialRequestResend()
{
  char cmdbuffer[100]="Resend:";
  ltoa(gcode_LastN+1, cmdbuffer+7, 10);
  Serial.flush();
  Serial.println(cmdbuffer);
  ClearToSend();
}

inline void ClearToSend()
{
  Serial.println("ok"); 
}

inline void get_coordinates()
{
  if(code_seen('X')) destination_x = (float)code_value() + relative_mode*current_x;
  else destination_x = current_x;                                                       //Are these else lines really needed?
  if(code_seen('Y')) destination_y = (float)code_value() + relative_mode*current_y;
  else destination_y = current_y;
  if(code_seen('Z')) destination_z = (float)code_value() + relative_mode*current_z;
  else destination_z = current_z;
  if(code_seen('E')) destination_e = (float)code_value() + (relative_mode_e || relative_mode)*current_e;
  else destination_e = current_e;
  if(code_seen('F')) {
    next_feedrate = code_value();
    if(next_feedrate > 0.0) feedrate = next_feedrate;
  }
  
  //Find direction
  if(destination_x >= current_x) direction_x=1;
  else direction_x=0;
  if(destination_y >= current_y) direction_y=1;
  else direction_y=0;
  if(destination_z >= current_z) direction_z=1;
  else direction_z=0;
  if(destination_e >= current_e) direction_e=1;
  else direction_e=0;
  
  
  if (min_software_endstops) {
    if (destination_x < 0) destination_x = 0.0;
    if (destination_y < 0) destination_y = 0.0;
    if (destination_z < 0) destination_z = 0.0;
  }

  if (max_software_endstops) {
    if (destination_x > X_MAX_LENGTH) destination_x = X_MAX_LENGTH;
    if (destination_y > Y_MAX_LENGTH) destination_y = Y_MAX_LENGTH;
    if (destination_z > Z_MAX_LENGTH) destination_z = Z_MAX_LENGTH;
  }
  
  if(feedrate > max_feedrate) feedrate = max_feedrate;
}

void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remaining, unsigned long z_steps_remaining, unsigned long e_steps_remaining) // make linear move with preset speeds and destinations, see G0 and G1
{
  //Determine direction of movement
  if (destination_x > current_x) digitalWrite(X_DIR_PIN,!INVERT_X_DIR);
  else digitalWrite(X_DIR_PIN,INVERT_X_DIR);
  if (destination_y > current_y) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR);
  else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR);
  if (destination_z > current_z) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR);
  else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR);
  if (destination_e > current_e) digitalWrite(E_DIR_PIN,!INVERT_E_DIR);
  else digitalWrite(E_DIR_PIN,INVERT_E_DIR);
  
  //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
  if(x_steps_remaining) enable_x();
  if(y_steps_remaining) enable_y();
  if(z_steps_remaining) enable_z();
  if(e_steps_remaining) enable_e();

  if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
  if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
  if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
  
  previous_millis_heater = millis();

  //while(x_steps_remaining > 0 || y_steps_remaining > 0 || z_steps_remaining > 0 || e_steps_remaining > 0) // move until no more steps remain
  while(x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) // move until no more steps remain
  { 
    if(x_steps_remaining) {
      if ((micros()-previous_micros_x) >= x_interval) { do_x_step(); x_steps_remaining--; }
      if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
    }
    
    if(y_steps_remaining) {
      if ((micros()-previous_micros_y) >= y_interval) { do_y_step(); y_steps_remaining--; }
      if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
    }
    
    if(z_steps_remaining) {
      if ((micros()-previous_micros_z) >= z_interval) { do_z_step(); z_steps_remaining--; }
      if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
    }    
    
    if(e_steps_remaining) if ((micros()-previous_micros_e) >= e_interval) { do_e_step(); e_steps_remaining--; }
    
    if( (millis() - previous_millis_heater) >= 500 ) {
      manage_heater();
      previous_millis_heater = millis();
    }
  }
  
  if(DISABLE_X) disable_x();
  if(DISABLE_Y) disable_y();
  if(DISABLE_Z) disable_z();
  if(DISABLE_E) disable_e();
  
  // Update current position partly based on direction, we probably can combine this with the direction code above...
  if (destination_x > current_x) current_x = current_x + x_steps_to_take/x_steps_per_unit;
  else current_x = current_x - x_steps_to_take/x_steps_per_unit;
  if (destination_y > current_y) current_y = current_y + y_steps_to_take/y_steps_per_unit;
  else current_y = current_y - y_steps_to_take/y_steps_per_unit;
  if (destination_z > current_z) current_z = current_z + z_steps_to_take/z_steps_per_unit;
  else current_z = current_z - z_steps_to_take/z_steps_per_unit;
  if (destination_e > current_e) current_e = current_e + e_steps_to_take/e_steps_per_unit;
  else current_e = current_e - e_steps_to_take/e_steps_per_unit;
}


inline void do_x_step()
{
  digitalWrite(X_STEP_PIN, HIGH);
  previous_micros_x = micros();
  //delayMicroseconds(3);
  digitalWrite(X_STEP_PIN, LOW);
}

inline void do_y_step()
{
  digitalWrite(Y_STEP_PIN, HIGH);
  previous_micros_y = micros();
  //delayMicroseconds(3);
  digitalWrite(Y_STEP_PIN, LOW);
}

inline void do_z_step()
{
  digitalWrite(Z_STEP_PIN, HIGH);
  previous_micros_z = micros();
  //delayMicroseconds(3);
  digitalWrite(Z_STEP_PIN, LOW);
}

inline void do_e_step()
{
  digitalWrite(E_STEP_PIN, HIGH);
  previous_micros_e = micros();
  //delayMicroseconds(3);
  digitalWrite(E_STEP_PIN, LOW);
}

inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); }
inline void disable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN,!Y_ENABLE_ON); }
inline void disable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN,!Z_ENABLE_ON); }
inline void disable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN,!E_ENABLE_ON); }
inline void  enable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN, X_ENABLE_ON); }
inline void  enable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN, Y_ENABLE_ON); }
inline void  enable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN, Z_ENABLE_ON); }
inline void  enable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN, E_ENABLE_ON); }

inline void manage_heater()
{
  current_raw = analogRead(TEMP_0_PIN);                  // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, 
  if(USE_THERMISTOR) current_raw = 1023 - current_raw;   // this switches it up so that the reading appears lower than target for the control logic.
  
  if(current_raw >= target_raw) digitalWrite(HEATER_0_PIN,LOW);
  else digitalWrite(HEATER_0_PIN,HIGH);
}

// Takes temperature value as input and returns corresponding analog value from RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analog(int celsius) {
  if(USE_THERMISTOR) {
    int raw = 0;
    byte i;
    
    for (i=1; i<NUMTEMPS; i++)
    {
      if (temptable[i][1] < celsius)
      {
        raw = temptable[i-1][0] + 
          (celsius - temptable[i-1][1]) * 
          (temptable[i][0] - temptable[i-1][0]) /
          (temptable[i][1] - temptable[i-1][1]);
      
        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == NUMTEMPS) raw = temptable[i-1][0];

    return 1023 - raw;
  } else {
    return celsius * (1024.0/(5.0*100.0));
  }
}

// Derived from RepRap FiveD extruder::getTemperature()
float analog2temp(int raw) {
  if(USE_THERMISTOR) {
    int celsius = 0;
    byte i;

    for (i=1; i<NUMTEMPS; i++)
    {
      if (temptable[i][0] > raw)
      {
        celsius  = temptable[i-1][1] + 
          (raw - temptable[i-1][0]) * 
          (temptable[i][1] - temptable[i-1][1]) /
          (temptable[i][0] - temptable[i-1][0]);

        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == NUMTEMPS) celsius = temptable[i-1][1];

    return celsius;
    
  } else {
    return raw * ((5.0*100.0)/1024.0);
  }
}

inline void kill()
{
  if(HEATER_0_PIN > -1) digitalWrite(HEATER_0_PIN,LOW);
  
  disable_x;
  disable_y;
  disable_z;
  disable_e;
  
  if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  
  while(1)
  {
    Serial.print("Fatal Exception Shutdown, Last Line: ");
    Serial.println(gcode_LastN);
    delay(5000); // 5 Second delay
  }
}