summaryrefslogtreecommitdiff
path: root/Tonokip_Firmware/Tonokip_Firmware.pde
blob: fc49da13f52228bb207cc6a35100c3c32b1e43f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// Licence: GPL

#include "Tonokip_Firmware.h"
#include "configuration.h"
#include "pins.h"

#ifdef SDSUPPORT
#include "SdFat.h"
#endif

// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes

//Implemented Codes
//-------------------
// G0  -> G1
// G1  - Coordinated Movement X Y Z E
// G4  - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given

//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position

//Custom M Codes
// M80  - Turn on Power Supply
// M20  - List SD card
// M21  - Init SD card
// M22  - Release SD card
// M23  - Select SD file (M23 filename.g)
// M24  - Start/resume SD print
// M25  - Pause SD print
// M26  - Set SD position in bytes (M26 S12345)
// M27  - Report SD print status
// M28  - Start SD write (M28 filename.g)
// M29  - Stop SD write
// M81  - Turn off Power Supply
// M82  - Set E codes absolute (default)
// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
// M84  - Disable steppers until next move, 
//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92  - Set axis_steps_per_unit - same syntax as G92
// M115	- Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)


//Stepper Movement Variables
bool direction_x, direction_y, direction_z, direction_e;
unsigned long previous_micros = 0, previous_micros_x = 0, previous_micros_y = 0, previous_micros_z = 0, previous_micros_e = 0, previous_millis_heater, previous_millis_bed_heater;
unsigned long x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take;
#ifdef RAMP_ACCELERATION
  unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit);
  unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit);
  unsigned long max_interval;
  unsigned long x_steps_per_sqr_second = max_acceleration_units_per_sq_second * x_steps_per_unit;
  unsigned long y_steps_per_sqr_second = max_acceleration_units_per_sq_second * y_steps_per_unit;
  unsigned long x_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * x_steps_per_unit;
  unsigned long y_travel_steps_per_sqr_second = max_travel_acceleration_units_per_sq_second * y_steps_per_unit;
  unsigned long steps_per_sqr_second, plateau_steps;
#endif
#ifdef EXP_ACCELERATION
  unsigned long long_full_velocity_units = full_velocity_units * 100;
  unsigned long long_travel_move_full_velocity_units = travel_move_full_velocity_units * 100;
  unsigned long max_x_interval = 100000000.0 / (min_units_per_second * x_steps_per_unit);
  unsigned long max_y_interval = 100000000.0 / (min_units_per_second * y_steps_per_unit);
  unsigned long max_interval;
  unsigned long x_min_constant_speed_steps = min_constant_speed_units * x_steps_per_unit,
    y_min_constant_speed_steps = min_constant_speed_units * y_steps_per_unit, min_constant_speed_steps;
#endif
boolean acceleration_enabled = false, accelerating = false;
unsigned long interval;
float destination_x = 0.0, destination_y = 0.0, destination_z = 0.0, destination_e = 0.0;
float current_x = 0.0, current_y = 0.0, current_z = 0.0, current_e = 0.0;
long x_interval, y_interval, z_interval, e_interval; // for speed delay
float feedrate = 1500, next_feedrate, z_feedrate, saved_feedrate;
bool home_all_axis = true;
float time_for_move;
long gcode_N, gcode_LastN;
bool relative_mode = false;  //Determines Absolute or Relative Coordinates
bool relative_mode_e = false;  //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
long timediff = 0;
#ifdef STEP_DELAY_RATIO
  long long_step_delay_ratio = STEP_DELAY_RATIO * 100;
#endif


// comm variables
#define MAX_CMD_SIZE 96
#define BUFSIZE 8
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
int i = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc

// Manage heater variables. For a thermistor or AD595 thermocouple, raw values refer to the 
// reading from the analog pin. For a MAX6675 thermocouple, the raw value is the temperature in 0.25 
// degree increments (i.e. 100=25 deg). 

int target_raw = 0;
int current_raw = 0;
int target_bed_raw = 0;
int current_bed_raw = 0;
float tt = 0, bt = 0;
#ifdef PIDTEMP
  int temp_iState = 0;
  int temp_dState = 0;
  int pTerm;
  int iTerm;
  int dTerm;
      //int output;
  int error;
  int temp_iState_min = 100 * -PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
  int temp_iState_max = 100 * PID_INTEGRAL_DRIVE_MAX / PID_IGAIN;
#endif
#ifdef SMOOTHING
  uint32_t nma = SMOOTHFACTOR * analogRead(TEMP_0_PIN);
#endif
#ifdef WATCHPERIOD
  int watch_raw = -1000;
  unsigned long watchmillis = 0;
#endif
#ifdef MINTEMP
  int minttemp = temp2analog(MINTEMP);
#endif
#ifdef MAXTEMP
int maxttemp = temp2analog(MAXTEMP);
#endif
        
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;

#ifdef SDSUPPORT
  Sd2Card card;
  SdVolume volume;
  SdFile root;
  SdFile file;
  uint32_t filesize = 0;
  uint32_t sdpos = 0;
  bool sdmode = false;
  bool sdactive = false;
  bool savetosd = false;
  int16_t n;
  
  void initsd(){
  sdactive = false;
  #if SDSS >- 1
    if(root.isOpen())
        root.close();
    if (!card.init(SPI_FULL_SPEED,SDSS)){
        //if (!card.init(SPI_HALF_SPEED,SDSS))
          Serial.println("SD init fail");
    }
    else if (!volume.init(&card))
          Serial.println("volume.init failed");
    else if (!root.openRoot(&volume)) 
          Serial.println("openRoot failed");
    else 
            sdactive = true;
  #endif
  }
  
  inline void write_command(char *buf){
      char* begin = buf;
      char* npos = 0;
      char* end = buf + strlen(buf) - 1;
      
      file.writeError = false;
      if((npos = strchr(buf, 'N')) != NULL){
          begin = strchr(npos, ' ') + 1;
          end = strchr(npos, '*') - 1;
      }
      end[1] = '\r';
      end[2] = '\n';
      end[3] = '\0';
      //Serial.println(begin);
      file.write(begin);
      if (file.writeError){
          Serial.println("error writing to file");
      }
  }
#endif


void setup()
{ 
  Serial.begin(BAUDRATE);
  Serial.println("start");
  for(int i = 0; i < BUFSIZE; i++){
      fromsd[i] = false;
  }
  //Initialize Step Pins
  if(X_STEP_PIN > -1) pinMode(X_STEP_PIN,OUTPUT);
  if(Y_STEP_PIN > -1) pinMode(Y_STEP_PIN,OUTPUT);
  if(Z_STEP_PIN > -1) pinMode(Z_STEP_PIN,OUTPUT);
  if(E_STEP_PIN > -1) pinMode(E_STEP_PIN,OUTPUT);
  
  //Initialize Dir Pins
  if(X_DIR_PIN > -1) pinMode(X_DIR_PIN,OUTPUT);
  if(Y_DIR_PIN > -1) pinMode(Y_DIR_PIN,OUTPUT);
  if(Z_DIR_PIN > -1) pinMode(Z_DIR_PIN,OUTPUT);
  if(E_DIR_PIN > -1) pinMode(E_DIR_PIN,OUTPUT);

  //Steppers default to disabled.
  if(X_ENABLE_PIN > -1) if(!X_ENABLE_ON) digitalWrite(X_ENABLE_PIN,HIGH);
  if(Y_ENABLE_PIN > -1) if(!Y_ENABLE_ON) digitalWrite(Y_ENABLE_PIN,HIGH);
  if(Z_ENABLE_PIN > -1) if(!Z_ENABLE_ON) digitalWrite(Z_ENABLE_PIN,HIGH);
  if(E_ENABLE_PIN > -1) if(!E_ENABLE_ON) digitalWrite(E_ENABLE_PIN,HIGH);

  //endstop pullups
  #ifdef ENDSTOPPULLUPS
    if(X_MIN_PIN > -1) { pinMode(X_MIN_PIN,INPUT); digitalWrite(X_MIN_PIN,HIGH);}
    if(Y_MIN_PIN > -1) { pinMode(Y_MIN_PIN,INPUT); digitalWrite(Y_MIN_PIN,HIGH);}
    if(Z_MIN_PIN > -1) { pinMode(Z_MIN_PIN,INPUT); digitalWrite(Z_MIN_PIN,HIGH);}
    if(X_MAX_PIN > -1) { pinMode(X_MAX_PIN,INPUT); digitalWrite(X_MAX_PIN,HIGH);}
    if(Y_MAX_PIN > -1) { pinMode(Y_MAX_PIN,INPUT); digitalWrite(Y_MAX_PIN,HIGH);}
    if(Z_MAX_PIN > -1) { pinMode(Z_MAX_PIN,INPUT); digitalWrite(Z_MAX_PIN,HIGH);}
  #endif
  //Initialize Enable Pins
  if(X_ENABLE_PIN > -1) pinMode(X_ENABLE_PIN,OUTPUT);
  if(Y_ENABLE_PIN > -1) pinMode(Y_ENABLE_PIN,OUTPUT);
  if(Z_ENABLE_PIN > -1) pinMode(Z_ENABLE_PIN,OUTPUT);
  if(E_ENABLE_PIN > -1) pinMode(E_ENABLE_PIN,OUTPUT);

  if(HEATER_0_PIN > -1) pinMode(HEATER_0_PIN,OUTPUT);
  if(HEATER_1_PIN > -1) pinMode(HEATER_1_PIN,OUTPUT);
  
#ifdef HEATER_USES_MAX6675
  digitalWrite(SCK_PIN,0);
  pinMode(SCK_PIN,OUTPUT);

  digitalWrite(MOSI_PIN,1);
  pinMode(MOSI_PIN,OUTPUT);

  digitalWrite(MISO_PIN,1);
  pinMode(MISO_PIN,INPUT);

  digitalWrite(MAX6675_SS,1);
  pinMode(MAX6675_SS,OUTPUT);
#endif  
 
#ifdef SDSUPPORT

  //power to SD reader
  #if SDPOWER > -1
    pinMode(SDPOWER,OUTPUT); 
    digitalWrite(SDPOWER,HIGH);
  #endif
  initsd();

#endif
}


void loop()
{
  if(buflen<3)
	get_command();
  
  if(buflen){
#ifdef SDSUPPORT
    if(savetosd){
        if(strstr(cmdbuffer[bufindr],"M29") == NULL){
            write_command(cmdbuffer[bufindr]);
            Serial.println("ok");
        }else{
            file.sync();
            file.close();
            savetosd = false;
            Serial.println("Done saving file.");
        }
    }else{
        process_commands();
    }
#else
    process_commands();
#endif
    buflen = (buflen-1);
    bufindr = (bufindr + 1)%BUFSIZE;
    }
  //check heater every n milliseconds
      manage_heater();
      manage_inactivity(1);
  }


inline void get_command() 
{ 
  while( Serial.available() > 0  && buflen < BUFSIZE) {
    serial_char = Serial.read();
    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) 
    {
      if(!serial_count) return; //if empty line
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
      if(!comment_mode){
    fromsd[bufindw] = false;
  if(strstr(cmdbuffer[bufindw], "N") != NULL)
  {
    strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
    gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
    if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
      Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
      Serial.println(gcode_LastN);
      //Serial.println(gcode_N);
      FlushSerialRequestResend();
      serial_count = 0;
      return;
    }
    
    if(strstr(cmdbuffer[bufindw], "*") != NULL)
    {
      byte checksum = 0;
      byte count = 0;
      while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
      strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  
      if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
        Serial.print("Error: checksum mismatch, Last Line:");
        Serial.println(gcode_LastN);
        FlushSerialRequestResend();
        serial_count = 0;
        return;
      }
      //if no errors, continue parsing
    }
    else 
    {
      Serial.print("Error: No Checksum with line number, Last Line:");
      Serial.println(gcode_LastN);
      FlushSerialRequestResend();
      serial_count = 0;
      return;
    }
    
    gcode_LastN = gcode_N;
    //if no errors, continue parsing
  }
  else  // if we don't receive 'N' but still see '*'
  {
    if((strstr(cmdbuffer[bufindw], "*") != NULL))
    {
      Serial.print("Error: No Line Number with checksum, Last Line:");
      Serial.println(gcode_LastN);
      serial_count = 0;
      return;
    }
  }
	if((strstr(cmdbuffer[bufindw], "G") != NULL)){
		strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
		switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
		case 0:
		case 1:
              #ifdef SDSUPPORT
              if(savetosd)
                break;
              #endif
			  Serial.println("ok"); 
			  break;
		default:
			break;
		}

	}
        bufindw = (bufindw + 1)%BUFSIZE;
        buflen += 1;
        
      }
      comment_mode = false; //for new command
      serial_count = 0; //clear buffer
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
    }
  }
#ifdef SDSUPPORT
if(!sdmode || serial_count!=0){
    return;
}
  while( filesize > sdpos  && buflen < BUFSIZE) {
    n = file.read();
    serial_char = (char)n;
    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) 
    {
        sdpos = file.curPosition();
        if(sdpos >= filesize){
            sdmode = false;
            Serial.println("Done printing file");
        }
      if(!serial_count) return; //if empty line
      cmdbuffer[bufindw][serial_count] = 0; //terminate string
      if(!comment_mode){
        fromsd[bufindw] = true;
        buflen += 1;
        bufindw = (bufindw + 1)%BUFSIZE;
      }
      comment_mode = false; //for new command
      serial_count = 0; //clear buffer
    }
    else
    {
      if(serial_char == ';') comment_mode = true;
      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
    }
}
#endif

}


inline float code_value() { return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); }
inline long code_value_long() { return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); }
inline bool code_seen(char code_string[]) { return (strstr(cmdbuffer[bufindr], code_string) != NULL); }  //Return True if the string was found

inline bool code_seen(char code)
{
  strchr_pointer = strchr(cmdbuffer[bufindr], code);
  return (strchr_pointer != NULL);  //Return True if a character was found
}
 //experimental feedrate calc
float d = 0;
float xdiff = 0, ydiff = 0, zdiff = 0, ediff = 0;

inline void process_commands()
{
  unsigned long codenum; //throw away variable
  char *starpos = NULL;

  if(code_seen('G'))
  {
    switch((int)code_value())
    {
      case 0: // G0 -> G1
      case 1: // G1
        get_coordinates(); // For X Y Z E F
        prepare_move();
        previous_millis_cmd = millis();
        //ClearToSend();
        return;
        //break;
      case 4: // G4 dwell
        codenum = 0;
        if(code_seen('P')) codenum = code_value(); // milliseconds to wait
        if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
        codenum += millis();  // keep track of when we started waiting
        while(millis()  < codenum ){
          manage_heater();
        }
        break;
      case 28: //G28 Home all Axis one at a time
        saved_feedrate = feedrate;
        destination_x = 0;
        current_x = 0;
        destination_y = 0;
        current_y = 0;
        destination_z = 0;
        current_z = 0;
        destination_e = 0;
        current_e = 0;
        feedrate = 0;
        
        home_all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')));

        if((home_all_axis) || (code_seen('X'))) {
          if((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)) {
            current_x = 0;
            destination_x = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
            feedrate = min_units_per_second * 60;
            prepare_move();
            
            current_x = 0;
            destination_x = -1 * X_HOME_DIR;
            prepare_move();
            
            destination_x = 10 * X_HOME_DIR;
            prepare_move();
            
            current_x = 0;
            destination_x = 0;
            feedrate = 0;
          }
        }
        
        if((home_all_axis) || (code_seen('Y'))) {
          if((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)) {
            current_y = 0;
            destination_y = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
            feedrate = min_units_per_second * 60;
            prepare_move();
            
            current_y = 0;
            destination_y = -1 * Y_HOME_DIR;
            prepare_move();
            
            destination_y = 10 * Y_HOME_DIR;
            prepare_move();
            
            current_y = 0;
            destination_y = 0;
            feedrate = 0;
          }
        }
        
        if((home_all_axis) || (code_seen('Z'))) {
          if((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)) {
            current_z = 0;
            destination_z = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
            feedrate = max_z_feedrate/2;
            prepare_move();
            
            current_z = 0;
            destination_z = -1 * Z_HOME_DIR;
            prepare_move();
            
            destination_z = 10 * Z_HOME_DIR;
            prepare_move();
            
            current_z = 0;
            destination_z = 0;
            feedrate = 0;
          }
        }
        
        feedrate = saved_feedrate;
        previous_millis_cmd = millis();
        break;
      case 90: // G90
        relative_mode = false;
        break;
      case 91: // G91
        relative_mode = true;
        break;
      case 92: // G92
        if(code_seen('X')) current_x = code_value();
        if(code_seen('Y')) current_y = code_value();
        if(code_seen('Z')) current_z = code_value();
        if(code_seen('E')) current_e = code_value();
        break;
        
    }
  }

  else if(code_seen('M'))
  {
    
    switch( (int)code_value() ) 
    {
#ifdef SDSUPPORT
        
      case 20: // M20 - list SD card
        Serial.println("Begin file list");
        root.ls();
        Serial.println("End file list");
        break;
      case 21: // M21 - init SD card
        sdmode = false;
        initsd();
        break;
      case 22: //M22 - release SD card
        sdmode = false;
        sdactive = false;
        break;
      case 23: //M23 - Select file
        if(sdactive){
            sdmode = false;
            file.close();
            starpos = (strchr(strchr_pointer + 4,'*'));
            if(starpos!=NULL)
                *(starpos-1)='\0';
            if (file.open(&root, strchr_pointer + 4, O_READ)) {
                Serial.print("File opened:");
                Serial.print(strchr_pointer + 4);
                Serial.print(" Size:");
                Serial.println(file.fileSize());
                sdpos = 0;
                filesize = file.fileSize();
                Serial.println("File selected");
            }
            else{
                Serial.println("file.open failed");
            }
        }
        break;
      case 24: //M24 - Start SD print
        if(sdactive){
            sdmode = true;
        }
        break;
      case 25: //M25 - Pause SD print
        if(sdmode){
            sdmode = false;
        }
        break;
      case 26: //M26 - Set SD index
        if(sdactive && code_seen('S')){
            sdpos = code_value_long();
            file.seekSet(sdpos);
        }
        break;
      case 27: //M27 - Get SD status
        if(sdactive){
            Serial.print("SD printing byte ");
            Serial.print(sdpos);
            Serial.print("/");
            Serial.println(filesize);
        }else{
            Serial.println("Not SD printing");
        }
        break;
            case 28: //M28 - Start SD write
        if(sdactive){
          char* npos = 0;
            file.close();
            sdmode = false;
            starpos = (strchr(strchr_pointer + 4,'*'));
            if(starpos != NULL){
              npos = strchr(cmdbuffer[bufindr], 'N');
              strchr_pointer = strchr(npos,' ') + 1;
              *(starpos-1) = '\0';
            }
      if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
            {
            Serial.print("open failed, File: ");
            Serial.print(strchr_pointer + 4);
            Serial.print(".");
            }else{
            savetosd = true;
            Serial.print("Writing to file: ");
            Serial.println(strchr_pointer + 4);
            }
        }
        break;
      case 29: //M29 - Stop SD write
        //processed in write to file routine above
        //savetosd = false;
        break;
#endif
      case 104: // M104
        if (code_seen('S')) target_raw = temp2analog(code_value());
        #ifdef WATCHPERIOD
            if(target_raw > current_raw){
                watchmillis = max(1,millis());
                watch_raw = current_raw;
            }else{
                watchmillis = 0;
            }
        #endif
        break;
      case 140: // M140 set bed temp
        if (code_seen('S')) target_bed_raw = temp2analogBed(code_value());
        break;
      case 105: // M105
        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)
          tt = analog2temp(current_raw);
        #endif
        #if TEMP_1_PIN > -1
          bt = analog2tempBed(current_bed_raw);
        #endif
        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX6675)
            Serial.print("ok T:");
            Serial.print(tt); 
          #if TEMP_1_PIN > -1
            Serial.print(" B:");
            Serial.println(bt); 
          #else
            Serial.println();
          #endif
        #else
          Serial.println("No thermistors - no temp");
        #endif
        return;
        //break;
      case 109: // M109 - Wait for extruder heater to reach target.
        if (code_seen('S')) target_raw = temp2analog(code_value());
        #ifdef WATCHPERIOD
            if(target_raw>current_raw){
                watchmillis = max(1,millis());
                watch_raw = current_raw;
            }else{
                watchmillis = 0;
            }
        #endif
        codenum = millis(); 
        while(current_raw < target_raw) {
          if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
          {
            Serial.print("T:");
            Serial.println( analog2temp(current_raw) ); 
            codenum = millis(); 
          }
          manage_heater();
        }
        break;
      case 190: // M190 - Wait bed for heater to reach target.
      #if TEMP_1_PIN > -1
        if (code_seen('S')) target_bed_raw = temp2analog(code_value());
        codenum = millis(); 
        while(current_bed_raw < target_bed_raw) {
          if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
          {
            tt=analog2temp(current_raw);
            Serial.print("T:");
            Serial.println( tt );
            Serial.print("ok T:");
            Serial.print( tt ); 
            Serial.print(" B:");
            Serial.println( analog2temp(current_bed_raw) ); 
            codenum = millis(); 
          }
            manage_heater();
        }
      #endif
      break;
      case 106: //M106 Fan On
        if (code_seen('S')){
            digitalWrite(FAN_PIN, HIGH);
            analogWrite(FAN_PIN, constrain(code_value(),0,255) );
        }
        else
            digitalWrite(FAN_PIN, HIGH);
        break;
      case 107: //M107 Fan Off
        analogWrite(FAN_PIN, 0);
        
        digitalWrite(FAN_PIN, LOW);
        break;
      case 80: // M81 - ATX Power On
        if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND
        break;
      case 81: // M81 - ATX Power Off
        if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
        break;
      case 82:
        relative_mode_e = false;
        break;
      case 83:
        relative_mode_e = true;
        break;
      case 84:
        if(code_seen('S')){ stepper_inactive_time = code_value() * 1000; }
        else{ disable_x(); disable_y(); disable_z(); disable_e(); }
        break;
      case 85: // M85
        code_seen('S');
        max_inactive_time = code_value() * 1000; 
        break;
      case 92: // M92
        if(code_seen('X')) x_steps_per_unit = code_value();
        if(code_seen('Y')) y_steps_per_unit = code_value();
        if(code_seen('Z')) z_steps_per_unit = code_value();
        if(code_seen('E')) e_steps_per_unit = code_value();
        break;
      case 115: // M115
        Serial.println("FIRMWARE_NAME:Sprinter FIRMWARE_URL:http%%3A/github.com/kliment/Sprinter/ PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
        break;
      case 114: // M114
	Serial.print("X:");
        Serial.print(current_x);
	Serial.print("Y:");
        Serial.print(current_y);
	Serial.print("Z:");
        Serial.print(current_z);
	Serial.print("E:");
        Serial.println(current_e);
        break;
      #ifdef RAMP_ACCELERATION
      case 201: // M201
        if(code_seen('X')) x_steps_per_sqr_second = code_value() * x_steps_per_unit;
        if(code_seen('Y')) y_steps_per_sqr_second = code_value() * y_steps_per_unit;
        break;
      case 202: // M202
        if(code_seen('X')) x_travel_steps_per_sqr_second = code_value() * x_steps_per_unit;
        if(code_seen('Y')) y_travel_steps_per_sqr_second = code_value() * y_steps_per_unit;
        break;
      #endif
    }
    
  }
  else{
      Serial.println("Unknown command:");
      Serial.println(cmdbuffer[bufindr]);
  }
  
  ClearToSend();
      
}

inline void FlushSerialRequestResend()
{
  //char cmdbuffer[bufindr][100]="Resend:";
  Serial.flush();
  Serial.print("Resend:");
  Serial.println(gcode_LastN + 1);
  ClearToSend();
}

inline void ClearToSend()
{
  previous_millis_cmd = millis();
  #ifdef SDSUPPORT
  if(fromsd[bufindr])
    return;
  #endif
  Serial.println("ok"); 
}

inline void get_coordinates()
{
  if(code_seen('X')) destination_x = (float)code_value() + relative_mode*current_x;
  else destination_x = current_x;                                                       //Are these else lines really needed?
  if(code_seen('Y')) destination_y = (float)code_value() + relative_mode*current_y;
  else destination_y = current_y;
  if(code_seen('Z')) destination_z = (float)code_value() + relative_mode*current_z;
  else destination_z = current_z;
  if(code_seen('E')) destination_e = (float)code_value() + (relative_mode_e || relative_mode)*current_e;
  else destination_e = current_e;
  if(code_seen('F')) {
    next_feedrate = code_value();
    if(next_feedrate > 0.0) feedrate = next_feedrate;
  }
}

inline void prepare_move()
{
  //Find direction
  if(destination_x >= current_x) direction_x = 1;
  else direction_x = 0;
  if(destination_y >= current_y) direction_y = 1;
  else direction_y = 0;
  if(destination_z >= current_z) direction_z = 1;
  else direction_z = 0;
  if(destination_e >= current_e) direction_e = 1;
  else direction_e = 0;
  
  
  if (min_software_endstops) {
    if (destination_x < 0) destination_x = 0.0;
    if (destination_y < 0) destination_y = 0.0;
    if (destination_z < 0) destination_z = 0.0;
  }

  if (max_software_endstops) {
    if (destination_x > X_MAX_LENGTH) destination_x = X_MAX_LENGTH;
    if (destination_y > Y_MAX_LENGTH) destination_y = Y_MAX_LENGTH;
    if (destination_z > Z_MAX_LENGTH) destination_z = Z_MAX_LENGTH;
  }
  
  if(feedrate > max_feedrate) feedrate = max_feedrate;

  if(feedrate > max_z_feedrate) z_feedrate = max_z_feedrate;
  else z_feedrate = feedrate;
  
  xdiff = (destination_x - current_x);
  ydiff = (destination_y - current_y);
  zdiff = (destination_z - current_z);
  ediff = (destination_e - current_e);
  x_steps_to_take = abs(xdiff) * x_steps_per_unit;
  y_steps_to_take = abs(ydiff) * y_steps_per_unit;
  z_steps_to_take = abs(zdiff) * z_steps_per_unit;
  e_steps_to_take = abs(ediff) * e_steps_per_unit;
  if(feedrate < 10)
      feedrate = 10;
  /*
  //experimental feedrate calc
  if(abs(xdiff) > 0.1 && abs(ydiff) > 0.1)
      d = sqrt(xdiff * xdiff + ydiff * ydiff);
  else if(abs(xdiff) > 0.1)
      d = abs(xdiff);
  else if(abs(ydiff) > 0.1)
      d = abs(ydiff);
  else if(abs(zdiff) > 0.05)
      d = abs(zdiff);
  else if(abs(ediff) > 0.1)
      d = abs(ediff);
  else d = 1; //extremely slow move, should be okay for moves under 0.1mm
  time_for_move = (xdiff / (feedrate / 60000000) );
  //time = 60000000 * dist / feedrate
  //int feedz = (60000000 * zdiff) / time_for_move;
  //if(feedz > maxfeed)
  */
  #define X_TIME_FOR_MOVE ((float)x_steps_to_take / (x_steps_per_unit*feedrate/60000000))
  #define Y_TIME_FOR_MOVE ((float)y_steps_to_take / (y_steps_per_unit*feedrate/60000000))
  #define Z_TIME_FOR_MOVE ((float)z_steps_to_take / (z_steps_per_unit*z_feedrate/60000000))
  #define E_TIME_FOR_MOVE ((float)e_steps_to_take / (e_steps_per_unit*feedrate/60000000))
  
  time_for_move = max(X_TIME_FOR_MOVE, Y_TIME_FOR_MOVE);
  time_for_move = max(time_for_move, Z_TIME_FOR_MOVE);
  if(time_for_move <= 0) time_for_move = max(time_for_move, E_TIME_FOR_MOVE);

  if(x_steps_to_take) x_interval = time_for_move / x_steps_to_take * 100;
  if(y_steps_to_take) y_interval = time_for_move / y_steps_to_take * 100;
  if(z_steps_to_take) z_interval = time_for_move / z_steps_to_take * 100;
  if(e_steps_to_take && (x_steps_to_take + y_steps_to_take <= 0) ) e_interval = time_for_move / e_steps_to_take * 100;
  
  //#define DEBUGGING false
  #if 0        
  if(0) {
    Serial.print("destination_x: "); Serial.println(destination_x); 
    Serial.print("current_x: "); Serial.println(current_x); 
    Serial.print("x_steps_to_take: "); Serial.println(x_steps_to_take); 
    Serial.print("X_TIME_FOR_MVE: "); Serial.println(X_TIME_FOR_MOVE); 
    Serial.print("x_interval: "); Serial.println(x_interval); 
    Serial.println("");
    Serial.print("destination_y: "); Serial.println(destination_y); 
    Serial.print("current_y: "); Serial.println(current_y); 
    Serial.print("y_steps_to_take: "); Serial.println(y_steps_to_take); 
    Serial.print("Y_TIME_FOR_MVE: "); Serial.println(Y_TIME_FOR_MOVE); 
    Serial.print("y_interval: "); Serial.println(y_interval); 
    Serial.println("");
    Serial.print("destination_z: "); Serial.println(destination_z); 
    Serial.print("current_z: "); Serial.println(current_z); 
    Serial.print("z_steps_to_take: "); Serial.println(z_steps_to_take); 
    Serial.print("Z_TIME_FOR_MVE: "); Serial.println(Z_TIME_FOR_MOVE); 
    Serial.print("z_interval: "); Serial.println(z_interval); 
    Serial.println("");
    Serial.print("destination_e: "); Serial.println(destination_e); 
    Serial.print("current_e: "); Serial.println(current_e); 
    Serial.print("e_steps_to_take: "); Serial.println(e_steps_to_take); 
    Serial.print("E_TIME_FOR_MVE: "); Serial.println(E_TIME_FOR_MOVE); 
    Serial.print("e_interval: "); Serial.println(e_interval); 
    Serial.println("");
  }
  #endif
  
  linear_move(x_steps_to_take, y_steps_to_take, z_steps_to_take, e_steps_to_take); // make the move
}

void linear_move(unsigned long x_steps_remaining, unsigned long y_steps_remaining, unsigned long z_steps_remaining, unsigned long e_steps_remaining) // make linear move with preset speeds and destinations, see G0 and G1
{
  //Determine direction of movement
  if (destination_x > current_x) digitalWrite(X_DIR_PIN,!INVERT_X_DIR);
  else digitalWrite(X_DIR_PIN,INVERT_X_DIR);
  if (destination_y > current_y) digitalWrite(Y_DIR_PIN,!INVERT_Y_DIR);
  else digitalWrite(Y_DIR_PIN,INVERT_Y_DIR);
  if (destination_z > current_z) digitalWrite(Z_DIR_PIN,!INVERT_Z_DIR);
  else digitalWrite(Z_DIR_PIN,INVERT_Z_DIR);
  if (destination_e > current_e) digitalWrite(E_DIR_PIN,!INVERT_E_DIR);
  else digitalWrite(E_DIR_PIN,INVERT_E_DIR);
  
  if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
  if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
  if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
  if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) x_steps_remaining=0;
  if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) y_steps_remaining=0;
  if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) z_steps_remaining=0;
  
  
  //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
  if(x_steps_remaining) enable_x();
  if(y_steps_remaining) enable_y();
  if(z_steps_remaining) { enable_z(); do_z_step(); z_steps_remaining--; }
  if(e_steps_remaining) { enable_e(); do_e_step(); e_steps_remaining--; }

    //Define variables that are needed for the Bresenham algorithm. Please note that  Z is not currently included in the Bresenham algorithm.
  unsigned int delta_x = x_steps_remaining;
  unsigned long x_interval_nanos;
  unsigned int delta_y = y_steps_remaining;
  unsigned long y_interval_nanos;
  unsigned int delta_z = z_steps_remaining;
  unsigned long z_interval_nanos;
  boolean steep_y = delta_y > delta_x;// && delta_y > delta_e && delta_y > delta_z;
  boolean steep_x = delta_x >= delta_y;// && delta_x > delta_e && delta_x > delta_z;
  //boolean steep_z = delta_z > delta_x && delta_z > delta_y && delta_z > delta_e;
  int error_x;
  int error_y;
  int error_z;
  #ifdef RAMP_ACCELERATION
  long max_speed_steps_per_second;
  long min_speed_steps_per_second;
  #endif
  #ifdef EXP_ACCELERATION
  unsigned long virtual_full_velocity_steps;
  unsigned long full_velocity_steps;
  #endif
  unsigned long steps_remaining;
  unsigned long steps_to_take;
  
  //Do some Bresenham calculations depending on which axis will lead it.
  if(steep_y) {
   error_x = delta_y / 2;
   interval = y_interval;
   #ifdef RAMP_ACCELERATION
   max_interval = max_y_interval;
   if(e_steps_to_take > 0) steps_per_sqr_second = y_steps_per_sqr_second;
   else steps_per_sqr_second = y_travel_steps_per_sqr_second;
   max_speed_steps_per_second = 100000000 / interval;
   min_speed_steps_per_second = 100000000 / max_interval;
   float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second;
   plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time);
   #endif
   #ifdef EXP_ACCELERATION
   if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * y_steps_per_unit /100;
   else virtual_full_velocity_steps = long_travel_move_full_velocity_units * y_steps_per_unit /100;
   full_velocity_steps = min(virtual_full_velocity_steps, (delta_y - y_min_constant_speed_steps) / 2);
   max_interval = max_y_interval;
   min_constant_speed_steps = y_min_constant_speed_steps;
   #endif
   steps_remaining = delta_y;
   steps_to_take = delta_y;
  } else if (steep_x) {
   error_y = delta_x / 2;
   interval = x_interval;
   #ifdef RAMP_ACCELERATION
   max_interval = max_x_interval;
   if(e_steps_to_take > 0) steps_per_sqr_second = x_steps_per_sqr_second;
   else steps_per_sqr_second = x_travel_steps_per_sqr_second;
   max_speed_steps_per_second = 100000000 / interval;
   min_speed_steps_per_second = 100000000 / max_interval;
   float plateau_time = (max_speed_steps_per_second - min_speed_steps_per_second) / (float) steps_per_sqr_second;
   plateau_steps = (long) ((steps_per_sqr_second / 2.0 * plateau_time + min_speed_steps_per_second) * plateau_time);
   #endif
   #ifdef EXP_ACCELERATION
   if(e_steps_to_take > 0) virtual_full_velocity_steps = long_full_velocity_units * x_steps_per_unit /100;
   else virtual_full_velocity_steps = long_travel_move_full_velocity_units * x_steps_per_unit /100;
   full_velocity_steps = min(virtual_full_velocity_steps, (delta_x - x_min_constant_speed_steps) / 2);
   max_interval = max_x_interval;
   min_constant_speed_steps = x_min_constant_speed_steps;
   #endif
   steps_remaining = delta_x;
   steps_to_take = delta_x;
  }
  unsigned long steps_done = 0;
  #ifdef RAMP_ACCELERATION
  plateau_steps *= 1.01; // This is to compensate we use discrete intervals
  acceleration_enabled = true;
  long full_interval = interval;
  if(interval > max_interval) acceleration_enabled = false;
  boolean decelerating = false;
  #endif
  #ifdef EXP_ACCELERATION
  acceleration_enabled = true;
  if(full_velocity_steps == 0) full_velocity_steps++;
  if(interval > max_interval) acceleration_enabled = false;
  unsigned long full_interval = interval;
  if(min_constant_speed_steps >= steps_to_take) {
    acceleration_enabled = false;
    full_interval = max(max_interval, interval); // choose the min speed between feedrate and acceleration start speed
  }
  if(full_velocity_steps < virtual_full_velocity_steps && acceleration_enabled) full_interval = max(interval,
      max_interval - ((max_interval - full_interval) * full_velocity_steps / virtual_full_velocity_steps)); // choose the min speed between feedrate and speed at full steps
  unsigned int steps_acceleration_check = 1;
  accelerating = acceleration_enabled;
  #endif
  
  unsigned long start_move_micros = micros();
  previous_micros_x = start_move_micros*100;
  previous_micros_y = previous_micros_x;
  previous_micros_z = previous_micros_x;
  previous_micros_e = previous_micros_x;
  
  //move until no more steps remain 
  while(x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) {
    //If more that HEATER_CHECK_INTERVAL ms have passed since previous heating check, adjust temp
    manage_heater();
    manage_inactivity(2);
    #ifdef RAMP_ACCELERATION
    //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
    if (acceleration_enabled && steps_done == 0) {
        interval = max_interval;
    } else if (acceleration_enabled && steps_done <= plateau_steps) {
        long current_speed = (long) ((((long) steps_per_sqr_second) / 10000)
	    * ((micros() - start_move_micros)  / 100) + (long) min_speed_steps_per_second);
	    interval = 100000000 / current_speed;
      if (interval < full_interval) {
        accelerating = false;
      	interval = full_interval;
      }
      if (steps_done >= steps_to_take / 2) {
	plateau_steps = steps_done;
	max_speed_steps_per_second = 100000000 / interval;
	accelerating = false;
      }
    } else if (acceleration_enabled && steps_remaining <= plateau_steps) { //(interval > minInterval * 100) {
      if (!accelerating) {
        start_move_micros = micros();
        accelerating = true;
        decelerating = true;
      }				
      long current_speed = (long) ((long) max_speed_steps_per_second - ((((long) steps_per_sqr_second) / 10000)
          * ((micros() - start_move_micros) / 100)));
      interval = 100000000 / current_speed;
      if (interval > max_interval)
	interval = max_interval;
    } else {
      //Else, we are just use the full speed interval as current interval
      interval = full_interval;
      accelerating = false;
    }
    #endif
    #ifdef EXP_ACCELERATION
    //If acceleration is enabled on this move and we are in the acceleration segment, calculate the current interval
    if (acceleration_enabled && steps_done < full_velocity_steps && steps_done / full_velocity_steps < 1 && (steps_done % steps_acceleration_check == 0)) {
      if(steps_done == 0) {
        interval = max_interval;
      } else {
        interval = max_interval - ((max_interval - full_interval) * steps_done / virtual_full_velocity_steps);
      }
    } else if (acceleration_enabled && steps_remaining < full_velocity_steps) {
      //Else, if acceleration is enabled on this move and we are in the deceleration segment, calculate the current interval
      if(steps_remaining == 0) {
        interval = max_interval;
      } else {
        interval = max_interval - ((max_interval - full_interval) * steps_remaining / virtual_full_velocity_steps);
      }
      accelerating = true;
    } else if (steps_done - full_velocity_steps >= 1 || !acceleration_enabled){
      //Else, we are just use the full speed interval as current interval
      interval = full_interval;
      accelerating = false;
    }
    #endif

    //If there are x or y steps remaining, perform Bresenham algorithm
    if(x_steps_remaining || y_steps_remaining) {
      if(X_MIN_PIN > -1) if(!direction_x) if(digitalRead(X_MIN_PIN) != ENDSTOPS_INVERTING) break;
      if(Y_MIN_PIN > -1) if(!direction_y) if(digitalRead(Y_MIN_PIN) != ENDSTOPS_INVERTING) break;
      if(X_MAX_PIN > -1) if(direction_x) if(digitalRead(X_MAX_PIN) != ENDSTOPS_INVERTING) break;
      if(Y_MAX_PIN > -1) if(direction_y) if(digitalRead(Y_MAX_PIN) != ENDSTOPS_INVERTING) break;
      if(steep_y) {
        timediff = micros() * 100 - previous_micros_y;
        while(timediff >= interval && y_steps_remaining > 0) {
          steps_done++;
          steps_remaining--;
          y_steps_remaining--; timediff -= interval;
          error_x = error_x - delta_x;
          do_y_step();
          if(error_x < 0) {
            do_x_step(); x_steps_remaining--;
            error_x = error_x + delta_y;
          }
          #ifdef RAMP_ACCELERATION
          if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break;
          #endif
          #ifdef STEP_DELAY_RATIO
          if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
          #endif
          #ifdef STEP_DELAY_MICROS
          if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
          #endif
        }
      } else if (steep_x) {
        timediff=micros() * 100 - previous_micros_x;
        while(timediff >= interval && x_steps_remaining>0) {
          steps_done++;
          steps_remaining--;
          x_steps_remaining--; timediff -= interval;
          error_y = error_y - delta_y;
          do_x_step();
          if(error_y < 0) { 
            do_y_step(); y_steps_remaining--;
            error_y = error_y + delta_x;
          }
          #ifdef RAMP_ACCELERATION
          if (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating)) break;
          #endif
          #ifdef STEP_DELAY_RATIO
          if(timediff >= interval) delayMicroseconds(long_step_delay_ratio * interval / 10000);
          #endif
          #ifdef STEP_DELAY_MICROS
          if(timediff >= interval) delayMicroseconds(STEP_DELAY_MICROS);
          #endif
        }
      }
    }
    #ifdef RAMP_ACCELERATION
    if((x_steps_remaining>0 || y_steps_remaining>0) &&
        steps_to_take > 0 && 
        (steps_remaining == plateau_steps || (steps_done >= steps_to_take / 2 && accelerating && !decelerating))) continue;
    #endif

    //If there are z steps remaining, check if z steps must be taken
    if(z_steps_remaining) {
      if(Z_MIN_PIN > -1) if(!direction_z) if(digitalRead(Z_MIN_PIN) != ENDSTOPS_INVERTING) break;
      if(Z_MAX_PIN > -1) if(direction_z) if(digitalRead(Z_MAX_PIN) != ENDSTOPS_INVERTING) break;
      timediff = micros() * 100-previous_micros_z;
      while(timediff >= z_interval && z_steps_remaining) {
        do_z_step();
        z_steps_remaining--;
        timediff -= z_interval;
        #ifdef STEP_DELAY_RATIO
        if(timediff >= z_interval) delayMicroseconds(long_step_delay_ratio * z_interval / 10000);
        #endif
        #ifdef STEP_DELAY_MICROS
        if(timediff >= z_interval) delayMicroseconds(STEP_DELAY_MICROS);
        #endif
      }
    }

    //If there are e steps remaining, check if e steps must be taken
    if(e_steps_remaining){
      if (x_steps_to_take + y_steps_to_take <= 0) timediff = micros()*100 - previous_micros_e;
      unsigned int final_e_steps_remaining = 0;
      if (steep_x && x_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * x_steps_remaining / x_steps_to_take;
      else if (steep_y && y_steps_to_take > 0) final_e_steps_remaining = e_steps_to_take * y_steps_remaining / y_steps_to_take;
      //If this move has X or Y steps, let E follow the Bresenham pace
      if (final_e_steps_remaining > 0)  while(e_steps_remaining > final_e_steps_remaining) { do_e_step(); e_steps_remaining--;}
      else if (x_steps_to_take + y_steps_to_take > 0)  while(e_steps_remaining) { do_e_step(); e_steps_remaining--;}
      //Else, normally check if e steps must be taken
      else while (timediff >= e_interval && e_steps_remaining) {
        do_e_step();
        e_steps_remaining--;
        timediff -= e_interval;
        #ifdef STEP_DELAY_RATIO
        if(timediff >= e_interval) delayMicroseconds(long_step_delay_ratio * e_interval / 10000);
        #endif
        #ifdef STEP_DELAY_MICROS
        if(timediff >= e_interval) delayMicroseconds(STEP_DELAY_MICROS);
        #endif
      }
    }
  }
  
  if(DISABLE_X) disable_x();
  if(DISABLE_Y) disable_y();
  if(DISABLE_Z) disable_z();
  if(DISABLE_E) disable_e();
  
  // Update current position partly based on direction, we probably can combine this with the direction code above...
  if (destination_x > current_x) current_x = current_x + x_steps_to_take / x_steps_per_unit;
  else current_x = current_x - x_steps_to_take / x_steps_per_unit;
  if (destination_y > current_y) current_y = current_y + y_steps_to_take / y_steps_per_unit;
  else current_y = current_y - y_steps_to_take / y_steps_per_unit;
  if (destination_z > current_z) current_z = current_z + z_steps_to_take / z_steps_per_unit;
  else current_z = current_z - z_steps_to_take / z_steps_per_unit;
  if (destination_e > current_e) current_e = current_e + e_steps_to_take / e_steps_per_unit;
  else current_e = current_e - e_steps_to_take / e_steps_per_unit;
}


inline void do_x_step()
{
  digitalWrite(X_STEP_PIN, HIGH);
  previous_micros_x += interval;
  //delayMicroseconds(3);
  digitalWrite(X_STEP_PIN, LOW);
}

inline void do_y_step()
{
  digitalWrite(Y_STEP_PIN, HIGH);
  previous_micros_y += interval;
  //delayMicroseconds(3);
  digitalWrite(Y_STEP_PIN, LOW);
}

inline void do_z_step()
{
  digitalWrite(Z_STEP_PIN, HIGH);
  previous_micros_z += z_interval;
  //delayMicroseconds(3);
  digitalWrite(Z_STEP_PIN, LOW);
}

inline void do_e_step()
{
  digitalWrite(E_STEP_PIN, HIGH);
  previous_micros_e += e_interval;
  //delayMicroseconds(3);
  digitalWrite(E_STEP_PIN, LOW);
}

inline void disable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN,!X_ENABLE_ON); }
inline void disable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN,!Y_ENABLE_ON); }
inline void disable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN,!Z_ENABLE_ON); }
inline void disable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN,!E_ENABLE_ON); }
inline void  enable_x() { if(X_ENABLE_PIN > -1) digitalWrite(X_ENABLE_PIN, X_ENABLE_ON); }
inline void  enable_y() { if(Y_ENABLE_PIN > -1) digitalWrite(Y_ENABLE_PIN, Y_ENABLE_ON); }
inline void  enable_z() { if(Z_ENABLE_PIN > -1) digitalWrite(Z_ENABLE_PIN, Z_ENABLE_ON); }
inline void  enable_e() { if(E_ENABLE_PIN > -1) digitalWrite(E_ENABLE_PIN, E_ENABLE_ON); }

#define HEAT_INTERVAL 250
#ifdef HEATER_USES_MAX6675
unsigned long max6675_previous_millis = 0;
int max6675_temp = 2000;

inline int read_max6675()
{
  if (millis() - max6675_previous_millis < HEAT_INTERVAL) 
    return max6675_temp;
  
  max6675_previous_millis = millis();

  max6675_temp = 0;
    
  #ifdef	PRR
    PRR &= ~(1<<PRSPI);
  #elif defined PRR0
    PRR0 &= ~(1<<PRSPI);
  #endif
  
  SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  
  // enable TT_MAX6675
  digitalWrite(MAX6675_SS, 0);
  
  // ensure 100ns delay - a bit extra is fine
  delay(1);
  
  // read MSB
  SPDR = 0;
  for (;(SPSR & (1<<SPIF)) == 0;);
  max6675_temp = SPDR;
  max6675_temp <<= 8;
  
  // read LSB
  SPDR = 0;
  for (;(SPSR & (1<<SPIF)) == 0;);
  max6675_temp |= SPDR;
  
  // disable TT_MAX6675
  digitalWrite(MAX6675_SS, 1);

  if (max6675_temp & 4) 
  {
    // thermocouple open
    max6675_temp = 2000;
  }
  else 
  {
    max6675_temp = max6675_temp >> 3;
  }

  return max6675_temp;
}
#endif


inline void manage_heater()
{
  if((millis() - previous_millis_heater) < HEATER_CHECK_INTERVAL )
    return;
  previous_millis_heater = millis();
  #ifdef HEATER_USES_THERMISTOR
    current_raw = analogRead(TEMP_0_PIN); 
    // When using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, 
    // this switches it up so that the reading appears lower than target for the control logic.
    current_raw = 1023 - current_raw;
  #elif defined HEATER_USES_AD595
    current_raw = analogRead(TEMP_0_PIN);    
  #elif defined HEATER_USES_MAX6675
    current_raw = read_max6675();
  #endif
  #ifdef SMOOTHING
  nma = (nma + current_raw) - (nma / SMOOTHFACTOR);
  current_raw = nma / SMOOTHFACTOR;
  #endif
  #ifdef WATCHPERIOD
    if(watchmillis && millis() - watchmillis > WATCHPERIOD){
        if(watch_raw + 1 >= current_raw){
            target_raw = 0;
            digitalWrite(HEATER_0_PIN,LOW);
            digitalWrite(LED_PIN,LOW);
        }else{
            watchmillis = 0;
        }
    }
  #endif
  #ifdef MINTEMP
    if(current_raw <= minttemp)
        target_raw = 0;
  #endif
  #ifdef MAXTEMP
    if(current_raw >= maxttemp) {
        target_raw = 0;
    }
  #endif
  #if (TEMP_0_PIN > -1) || defined (HEATER_USES_MAX66675)
    #ifdef PIDTEMP
      error = target_raw - current_raw;
      pTerm = (PID_PGAIN * error) / 100;
      temp_iState += error;
      temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
      iTerm = (PID_IGAIN * temp_iState) / 100;
      dTerm = (PID_DGAIN * (current_raw - temp_dState)) / 100;
      temp_dState = current_raw;
      analogWrite(HEATER_0_PIN, constrain(pTerm + iTerm - dTerm, 0, PID_MAX));
    #else
      if(current_raw >= target_raw)
      {
        digitalWrite(HEATER_0_PIN,LOW);
        digitalWrite(LED_PIN,LOW);
      }
      else 
      {
        digitalWrite(HEATER_0_PIN,HIGH);
        digitalWrite(LED_PIN,HIGH);
      }
    #endif
  #endif
    
  if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
    return;
  previous_millis_bed_heater = millis();
  
  #ifdef BED_USES_THERMISTOR
  
    current_bed_raw = analogRead(TEMP_1_PIN);                  
  
    // If using thermistor, when the heater is colder than targer temp, we get a higher analog reading than target, 
    // this switches it up so that the reading appears lower than target for the control logic.
    current_bed_raw = 1023 - current_bed_raw;
  #elif defined BED_USES_AD595
    current_bed_raw = analogRead(TEMP_1_PIN);                  

  #endif
  
  
  #if TEMP_1_PIN > -1
    if(current_bed_raw >= target_bed_raw)
    {
      digitalWrite(HEATER_1_PIN,LOW);
    }
    else 
    {
      digitalWrite(HEATER_1_PIN,HIGH);
    }
  #endif
}

// Takes hot end temperature value as input and returns corresponding raw value. 
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analog(int celsius) {
  #ifdef HEATER_USES_THERMISTOR
    int raw = 0;
    byte i;
    
    for (i=1; i<NUMTEMPS; i++)
    {
      if (temptable[i][1] < celsius)
      {
        raw = temptable[i-1][0] + 
          (celsius - temptable[i-1][1]) * 
          (temptable[i][0] - temptable[i-1][0]) /
          (temptable[i][1] - temptable[i-1][1]);
      
        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == NUMTEMPS) raw = temptable[i-1][0];

    return 1023 - raw;
  #elif defined HEATER_USES_AD595
    return celsius * (1024.0 / (5.0 * 100.0) );
  #elif defined HEATER_USES_MAX6675
    return celsius * 4.0;
  #endif
}

// Takes bed temperature value as input and returns corresponding raw value. 
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analogBed(int celsius) {
  #ifdef BED_USES_THERMISTOR

    int raw = 0;
    byte i;
    
    for (i=1; i<BNUMTEMPS; i++)
    {
      if (bedtemptable[i][1] < celsius)
      {
        raw = bedtemptable[i-1][0] + 
          (celsius - bedtemptable[i-1][1]) * 
          (bedtemptable[i][0] - bedtemptable[i-1][0]) /
          (bedtemptable[i][1] - bedtemptable[i-1][1]);
      
        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];

    return 1023 - raw;
  #elif defined BED_USES_AD595
    return celsius * (1024.0 / (5.0 * 100.0) );
  #endif
}

// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float analog2temp(int raw) {
  #ifdef HEATER_USES_THERMISTOR
    int celsius = 0;
    byte i;
    
    raw = 1023 - raw;

    for (i=1; i<NUMTEMPS; i++)
    {
      if (temptable[i][0] > raw)
      {
        celsius  = temptable[i-1][1] + 
          (raw - temptable[i-1][0]) * 
          (temptable[i][1] - temptable[i-1][1]) /
          (temptable[i][0] - temptable[i-1][0]);

        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == NUMTEMPS) celsius = temptable[i-1][1];

    return celsius;
  #elif defined HEATER_USES_AD595
    return raw * ((5.0 * 100.0) / 1024.0);
  #elif defined HEATER_USES_MAX6675
    return raw * 0.25;
  #endif
}

// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float analog2tempBed(int raw) {
  #ifdef BED_USES_THERMISTOR
    int celsius = 0;
    byte i;

    raw = 1023 - raw;

    for (i=1; i<NUMTEMPS; i++)
    {
      if (bedtemptable[i][0] > raw)
      {
        celsius  = bedtemptable[i-1][1] + 
          (raw - bedtemptable[i-1][0]) * 
          (bedtemptable[i][1] - bedtemptable[i-1][1]) /
          (bedtemptable[i][0] - bedtemptable[i-1][0]);

        break;
      }
    }

    // Overflow: Set to last value in the table
    if (i == NUMTEMPS) celsius = bedtemptable[i-1][1];

    return celsius;
    
  #elif defined BED_USES_AD595
    return raw * ((5.0 * 100.0) / 1024.0);
  #endif
}

inline void kill()
{
  #if TEMP_0_PIN > -1
  target_raw=0;
  digitalWrite(HEATER_0_PIN,LOW);
  #endif
  #if TEMP_1_PIN > -1
  target_bed_raw=0;
  if(HEATER_1_PIN > -1) digitalWrite(HEATER_1_PIN,LOW);
  #endif
  disable_x();
  disable_y();
  disable_z();
  disable_e();
  
  if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  
}

inline void manage_inactivity(byte debug) { 
if( (millis()-previous_millis_cmd) >  max_inactive_time ) if(max_inactive_time) kill(); 
if( (millis()-previous_millis_cmd) >  stepper_inactive_time ) if(stepper_inactive_time) { disable_x(); disable_y(); disable_z(); disable_e(); }
}